版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EmbeddedDeepLearninginSpace:ArtificialIntelligencewithQormino®
Abstract
ArtificialIntelligence(AI)algorithmsareknowntobehighlydemandingintermsofcomputingresources.Thankstotheincreaseofcomputationalpowerofthelatestprocessingdevices,AIisalsobecomingpopularfortheSpaceindustryforvariousapplicationssuchasOn-boarddataprocessingforobservationsatellites,automatedguidanceofSpacecrafts,On-boarddecisionforcollisionprevention,Communicationsatellites,Fusionofdatasourcesforbetterpredictability,…
Untilrecently,Spaceindustrywasfacingthechallengetogetaccesstostate-of-the-artprocessingcomponentsthatwouldcomplywithSpacerequirements,i.e.highreliability,robustness,andradiationtolerance.
LedbytheGrenobleUniversitySpaceCentre(CSUG),theQlevErSatprojectleveragesthehighcomputingcapabilitiesofQorminoQLS1046-SpaceradiationtolerantprocessingmodulestorunAIalgorithmson-board,togetherwiththehighresolutionoftheimagestakenbytheEmeraldsensor.
ThiswhitepaperfirstpresentsthegeneralperformancesandfunctionalityoftheQLS1046-Spaceprocessor.Then,themainresultsfromthosebenchmarkingactivitiesaregiven,todemonstratethefeasibilitytouseQLS1046-SpacetorunembeddedAIinSpace.
Introduction
ArtificialIntelligence(AI)algorithmsareknowntobehighlydemandingintermsofcomputingresources.Thankstotheincreaseofcomputationalpowerofthelatestprocessingdevices,AIisbecomingpopularforgroundapplications.AInowcompeteswithtraditionaldataprocessinginanumberofapplications,suchasfacerecognition,autonomousdriving,orrobots.
TheSpaceindustrycanalsobenefitfromAIinvariousapplications:
On-boarddataprocessingforearlywarningstosituations,
Observationandmeteorologicalsatellites,whereon-boardprocessingallowstosendonlyrelevantandpre-processeddatatotheground,reducingdownlinkbandwidthrequirements,
AIcanimproveperformanceinautomatedguidanceofSpacecraftsincriticalmaneuverssuchasdockingorlanding,
On-boarddecisionallowsbettercollisionpreventionthankstoearlyreaction,andofferspossibilitiesofself-healthmonitoringandultimatelyautonomousself-reconfiguration,
Communicationsatellitescanbenefitfromsmartdataroutingandoptimizedantennapointingbasedonactualtrafficandweatherconditionstoincreasedatarateandminimizepowerconsumption,
Fusionofdatasourcesfromvariouskindofsensors,allowingtoseewhatisnotvisibletothe“humaneye”,includingon-boardanalysisoflargedatasetsindeepSpaceandSciencemissions.
Untilrecently,despitethiswiderangeofnewpossibilities,Spaceindustrywasfacingthechallengetogetaccesstostate-of-the-artprocessingcomponentsthatwouldcomplywithSpacerequirements,i.e.highreliability,robustness,andradiationtolerance.
LedbytheGrenobleUniversitySpaceCentre(CSUG),theQlevErSatisdevelopingananosatelliteusingartificialintelligencealgorithmstoobservetheEarthandmeetsocialchallengessuchasobservationofillegaldeforestation,monitoringofCO2emissionsorevaluationofdamagesafteranaturaldisaster.
Figure1:QlevErSatNanosatellite
ThissmartsatellitewillembedanEmerald16MPimagesensorandaQormino®QLS1046-Spaceprocessingmodule,bothnewradiation-tolerantandSpace-qualifiedcomponentsfromTeledynee2v.TheprojectleveragesthehighcomputingcapabilitiesofQLS1046-SpacetobeabletoruntheAIalgorithmson-board,togetherwiththehighresolutionoftheimagestakenbytheEmeraldsensor.
Figure3:Qormino®QLS1046-4GB Figure2:EMERALDSensor
Intheframeofthisproject,apartofthefeasibilitystudyaimedatverifyingthecomputingcapabilityoftheQorminoQLS1046-SpaceforAIalgorithms.ThiswhitepaperfirstpresentsthegeneralperformanceandfunctionalityofQLS1046-Space.Then,mainresultsobtainedinthosebenchmarkingactivitiesaregiven,demonstratingthefeasibilitytouseQLS1046-SpacetorunAIinSpace.
GeneralperformanceandfunctionalityofQormino®QLS1046-Space
QorminoisalineofprocessingmodulesfromTeledynee2vdedicatedtoSpaceandHigh-reliabilityapplications.ThosemodulescombineGHz-classmulticoreprocessors,withhighspeedDDR4memories,incompact44x26mmdimensions.Theycomeina0.8mmBGApackage,andaredesignedtorespondtoSWaP(Size,WeightandPower)constraints.Withbuilt-inDDR4buslayoutand“building-block”approach,designisfacilitatedwhileguaranteeingahighperformance.
QLS1046-SpaceistheQorminoversiondedicatedtoSpace.ItembedsaQuad-CoreArm®Cortex®-A72Microprocessorrunningupto1.8GHz,withECC-protectedL1andL2cachememoriesforreliablebehaviour.Itfeaturesarichsetofperipherals,includingintegratedpacketprocessingacceleration,highspeedseriallinkssupporting10GbEthernet,PCIe®Gen3,SATA3.0andUSB,aswellasanumberofgeneralpurposeinterfacessuchasSPI,I²C,andUART.Thecurrentversionintegrates4GBofDDR4withtransferspeedupto2.4GT/s,andaversionwith8GBisalsotargeted.
Figure4:ArchitectureofQLS1046-4GB-Space
Apartfromthepureperformanceaspect,thereasonforselectingthisdeviceisthatitisSpace-compliant.Boththeprocessorandthememoryareradiationtolerant:
SELfreeuptomorethan60MeV.cm²/mg
KnownSEU/SEFIcross-sectionsuptomorethan60MeV.cm²/mg
TID:100krad(Si)
Inaddition,QLS1046-Spaceanditscomponentsarequalified,manufactured,andscreenedfollowingNASAorECSSstandards.
Benchmark&Results
BenchmarkingactivitieswereperformedtoverifyinpracticethecomputingcapabilityofQLS1046-SpacetorunAIalgorithmsforSpaceapplications.ThefocusismainlyonAIforimageprocessing,sincetheQlevErSatprojecttargetsearthobservationusecases.Inthisstudy,onlyneuralnetworkswithdeeplearninghavebeentested.Classicalmachinelearningusuallyrequireslesscomputingresources,thusitwouldbeexpectedtogetevenbetterresultsinmachinelearning.
Inthisstudy,theperformancesofQLS1046-Spacewereevaluatedonthreedifferentaxes:
ThepurecomputingperformanceswereevaluatedintermsofGFLOPS(GigaFloatingPointOperationsPerSecond),sincethisisthetypicalwayofevaluatingthecomputingperformanceofadeviceinAIapplications.
Aninferencebenchmarkwasperformedtoverifythecapabilityofthedevicetoexecuteneuralnetworks.Severalclassicalneutralnetworkarchitectureshavebeentested.
Trainingperformancewasbrieflyassessed,toevaluatethepossibilityofapplyinglearningorfine-tuningonQLS1046-Space.
Benchmarksetup
TheperformanceassessmentwasrealizedwithaQLS1046-Spacedevelopmentkit,whichhasanumberofavailableinterfaces.TheoperatingsystemusedthroughoutthebenchmarkwasLinux(Ubuntu18.04).TheQSL1046-Spacedeviceinsidethedevelopmentkithad4GBofintegratedDDR4memory.Theversionwith8GBofDDR4memorywouldhavebeenmoreefficienttoexecuteAI,butitwasnotavailableatthetimeofthetesting.Inaddition,theprocessorwasrunningat1.6GHz,insteadof1.8GHzmaximumfrequency.ThismeansthattheresultspresentedinthiswhitepaperaresomewhatlimitedbytheamountofDDR4memoryavailableandtherunningfrequencyoftheprocessor.
Figure5:QLS1046-SpaceDevelopmentKit
Insomeofthefollowingbenchmarkresults,aregularcomputerwasusedasabasisforcomparisontorateQLS1046-Spaceperformance.ThiscomputerhadanIntel®Core™i7-9750Hprocessorrunningat
2.6GHzand32GBofDDR4.ItwasrunningLinux.ItisconsideredasagoodcomputertoperformAI,whichiswhyitisaconvenientreferenceinthefollowing.
Benchmarkresults
PerformancesofQLS1046-Spacewereevaluatedonthefollowingthreeaxes:
Figure6:Benchmarks
Purecomputingperformance
Forthepurecomputingperformanceevaluation,thebenchmark[1]wasused,whichconsistsinasmallandsimpletestsoftware.Intheresults,theperformanceofQLS1046-SpaceiscomparedtothatofthecomputerwiththeIntel®Core™i7-9750Hprocessor.Itshouldbenoticedthattheexecutionofthesoftwaredoesnottakeadvantagethehardwareacceleratorsoftheprocessors.ThisexplainsinparticularwhytheGFLOPSnumbersobtainedherearelowerthatwhatcanbefoundintheliteratureforthoseprocessors.Figure7presentsthepureresultsinGFLOPStocomparebothtargets.Figure8comparespowerefficiencysincethisisakeytopicinSpaceapplications.
Figure7:Summaryofthecomputingperformancecomparison.
Figure8:Powerefficiencyinquadcoreoperation.
Calculatedfromthermalpowercharacteristicsofbothdevices,45W@100°Cforthei7(Table5-2of[2]),14.6W@105°CforQLS1046-Space(Table8of[3]).
Itisobservedthatthegapbetweenthetwodevicesdependsonthenumberofcoresused,andwithhighernumberofcoresthedifferenceinperformancereduces.ThoseresultshighlightthatQLS1046-
Spaceoffersabouthalfofthecomputingcapabilitiesofthei7inthequad-coreconfiguration,whichisknowntobeagoodprocessortoperformAIonground.Hence,QLS1046-SpaceoffersafairamountofcomputingperformancetoperformAIinSpace.Inaddition,QLS1046-SpaceexhibitshigherpowerefficiencymakingitwellsuitedforSpacesystems.
Deeplearninginferencebenchmark
Inthisbenchmark,testsareperformedtoevaluatetheperformanceofQLS1046-Spaceininference,meaningwhenthedeviceusesaneuralnetworktoprocessanimage.Onlyclassicalneuralnetworksaretestedinthestudy,firstwithArmComputeLibrary[5],thenAI-Benchmark[4]onTensorFlow[7],andConvNet[6]onPyTorch[8].ItshouldbenoticedthatthetwomostpopularlibrariesusedforIAareTensorFlowandPyTorchproposedbyGoogleandFacebookrespectively,withbothlibrariessupportedbyArm[9].Thosenetworksarepre-trainedtoidentifyobjectsinpicturesandarewidelyusedintheexistingobjectclassifierssuchasr-cnn,fast-rcnn,fasterr-cnn[10]orCenterNet[11].However,TensorFlowandPyTorchlibrariesareevolvingveryquickly,andthisisthereasonforevaluatingfirsttheperformancewithArmComputeLibrary,whichisconsideredmorestable.
ArmComputeLibrary
Inthisbenchmark,ArmComputeLibrary[5]isusedtorundifferentclassicalneuralnetworks.TheresultsobtainedonQLS1046-SpaceareshownintheTable1:
Network
Executiontime[ms]
Numberofoperationsforaninference[MFLOP]
Computingperformances[GFLOPS]
Singlecore
Quadcore
Single
core
Quadcore
Alexnet
153
74
727
5
10
Googlenet
286
109
1500
5
14
Inceptionv3
848
314
6000
7
19
Inceptionv4
1870
655
13000
7
20
Mobilenet
118
44
570
5
13
Resnet50
501
206
4000
8
19
Squeezenet
145
64
360
2
6
Vgg16
1090
418
16000
15
38
Yolov3
6540
2500
66000
10
26
Table1:PerformanceofQLS1046-SpacewithArmcomputelibrary.
Thoseresultsconfirmthatitispossibletoperformon-boardimageclassificationusingQLS1046-Space,withthiskindofcommonclassifiers,andwithreasonableexecutiontime.ThoseresultsareespeciallyinterestingconsideringthatArmcomputelibraryisoneofthemajorframeworksforAI.
AI-Benchmark
AI-Benchmark[4]instantiatesbackbonesintheTensorFlowformat,whichareverycommonneuralnetworksoriginallycreatedforimageclassification.TheresultsofthebenchmarkfordifferentneuralnetworksaregivenintheTable2:
Backbone
Picture
size
Execution
time[ms]
Variability
[ms]
Description
VGG16[9]
224x224
1320
7
NetworktrainedonImageNet[12]to
classify1000objects.
VGG19[9]
512x512
13562
144
NetworktrainedonImageNet[12]to
classify1000objects.
ResNet-V2-50
346x346
868
5
Classifierbasedonresidualneural
network[13]
ResNet-V2-152
256x256
1538
18
Classifierbasedonresidualneural
network
Table2:AI-BenchmarkresultsonQLS1046-Space.
TheresultsshowthatQLS1046-Spaceallowstoperformanon-boardimageclassificationwithclassicalneuralnetworksinabout1s.ThisimpliesanoptimizedmemorymanagementwiththeuseofFP16type,andwithpicturesizesuitablewiththememoryavailableof4GB.ItisnoticedthatVGG19[9]isaround10timeslongertoexecutethanothertests,whichmaybeduetocachememoriesconfigurationandDDR4sizelimitation.
Basedontheresults,QLS1046-Spaceobtainsascoreof103.Neuralnetworksareknowntorequirelargeamountsofmemory,hencetheperformanceobtainedhereislimitedbytheDDR4sizeof4GBonthetestedversion.Muchhigherrankingisexpectedwithan8GBversion.
Convnet
Inthisbenchmark,ConvNet[6]onPyTorchistestedonQLS1046-Space.PytorchtendstobeusedmoreandmoreoftenoverTensorFlow.PyTorchwasoriginallymorecomplextousebutwasmoreflexible.FromPyTorchversion1.8,animportantreductionincomplexityisexpectedtobenefittoQLS1046-Space.ItshouldalsobenoticedthatPyTorchisnowcanhandletoolssuchasSLURM[14]onpytorch-lightning[15].ConvnetbenchmarkresultsonPyTorcharegivenintheTable3:
Network
Executiontime[ms]
QLS1046-Space@1.6GHz
Intel®Core™i7-9750H@2.6GHz
Alexnet
187
1.72
VGG11
764
4.28
ResNet50
578
7.29
Squeezenet1_0
328
2.28
Densenet121
1283
17.93
Mobilenet_v2
2337
6.38
Shufflenet
1278
8.49
Unet
1263
4.98
Table3:ConvnetresultsonQLS1046-Space.
Thebenchmarkshowsthatthei7isperformingmuchfasterthanQLS1046-Space,whichislimitedagainbythesizeofmemoryavailable.Despitethegapinperformance,itisstillconsideredthattheperformancelevelofferedbyQLS1046-Spaceisacceptabletoimplementon-boardAIprocessing.
Deeplearningtrainingperformance
TrainingperformanceusingQLS1046-SpacewasquicklytestedonConvnetwithTensorFlow.Itwasnotextensivelytestedsincemostup-to-datebackpropagation[16]benchmarksrequireatleast8GBofRAMmemory.Table4showsthecomparisonofthetrainingtimeforonesampleonResNet50betweenQLS1046-SpaceandtheIntel®i7.
Network
Trainingtimeforonesample[ms]
OnQLS1046-Space
OnIntel®Core™i7-9750H
ResNet50
3782
20
Table4:Comparisonoftrainingperformance.
ThisresultclearlyshowsthepenaltyofthelackofRAMmemoryonthecurrentversionofQLS1046-Spacefortrainingontraditionalimageclassifiers.Itshouldbenoticedthatacompletetrainingusuallyrequireshundredsofsamples.Thisresulthastobemitigatedduetothefactthatimageclassifiersareknowntobehighlydemandingincomputingresources.Sinceitwillbetime-consumingtoperformacompletetrainingonQLS1046-Space,analternativethatcanbeconsideredistoperformfine-tuning
[17]on-board.
TrainingsmallconvolutionalneuralnetworksforsimpledetectionusecasesseemsfeasiblewithQLS1046-Space,aswellasdeeplearningforprocessingtime-seriesor1-Dsignals.Intermsoftrainingcapabilitiesonimages,QLS1046-Spacewouldbemoreefficientinclassicalmachinelearning,butthosemodelsaremorecomplextobuild.
Discussion
QLS1046-SpaceoffersadecentamountacomputingcapabilityallowingtorundeeplearningAIforimageprocessinginSpace.Thedeviceisnotaspowerfulastailored-madesolutionsthatareavailableforAIinferenceingroundapplications,butitisthemostpowerfulSpace-qualifiedCPUavailableonthemarket.Intermsofpurecomputingcapabilities,itoffersperformanceinthesameorderofmagnitudeasanIntel®Core™i7-9750H.FromtheAIperformancepointofview,themaindrawbackofthecurrentversionisthe4GBmemory,whichrequiresanoptimizedmemorymanagementtorunAIforimageprocessing.Onnextversionswith8GBDDR4memoryormore,AIperformancewouldbesignificantlyincreased,andwouldreducetheburdenofoptimizedmemorymanagement.
PerformanceobtainedinthepreviousbenchmarkswasevaluatedwithclassicaldeepneuralnetworkswithouttakingadvantageofthespecificQLS1046-Spacearchitecture.DifferentAItopologiesaremoreoptimizedtorunonembeddedtargets,whichwouldbringabetterefficiencyoftheAIrunningonQLS1046-Space.ApartfromAIcomputingperformance,thestudyshowsthatQLS1046-SpaceexhibitsgoodpowerefficiencymakingitwellsuitedforSpacesystemswhereelectricalpowerislimitedandpowerdissipationisanissue.Fromtheelectronicarchitecturepointofview,itmightberelevanttoaddanFPGAasacompanion-chipforQLS1046-Space,inwhichcasetheFPGAcouldtakecareefficientlyofthepre-processing,andQLS1046-Spacewouldthenperformtheheavywork.
Inthisstudy,theprimaryfocuswasondeeplearningAIforimageprocessing,whichisconsideredoneofthemostdemandingapplicationintermsofcomputingresources.Forinstance,processingof1-Dtimeseriesismuchlessdemandingthatimageprocessing.Hence,theoutcomeofthestudyisthatQLS1046-Spacewouldalso
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省绵阳市平武县2024-2025学年七年级上学期1月期末考试道德与法治试卷(含答案)
- 湖南省株洲市2025届高三年级教学质量统一检测数学试题(含答案)
- 重大版小学英语(2012版)三年级下册期末试卷(含答案含听力原文无音频)
- 2024高端红酒进口及分销业务承包合同
- 2024施工建筑垃圾外运及环保处理一体化项目管理合同3篇
- 2024环保设备采购及运行维护合同
- 2024年运输服务合同详细条款
- 2024版住宅区前期物业管理服务协议范本版B版
- 2025年度GRC防火板采购合同模板3篇
- 2024石子销售合同范例:违约责任、争议解决
- 高考重庆语文试卷及答案
- DB13(J)T 8542-2023 建筑施工塔式起重机检验技术规程
- 2023年航空公司招聘:机场安检员基础知识试题(附答案)
- 《现在完成时》语法复习课件(共44张-)
- 岩溶地区建筑地基基础技术规范DBJ-T 15-136-2018
- 二年级下册语文《第3单元 口语交际:长大以后做什么》课件
- 自动控制原理(山东大学)智慧树知到期末考试答案2024年
- ba年会快闪开场模板
- 游戏你来比划我来猜的PPT
- 污水处理设备供货方案
- GB/T 45007-2024职业健康安全管理体系小型组织实施GB/T 45001-2020指南
评论
0/150
提交评论