版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AhybridAIhurricaneforecastingsystem:deeplearningensembleapproachandKalmanfilter
EbrahimEslamiandAIteammembersPI:Dr.YunsooChoi
DepartmentofEarthandAtmosphericSciences
UniversityofHouston
April2019
Yanniclops
AhmedKhanSalman EbrahimEslami
AlqamahSayeed
Overview
2007ThomsonHigherEducation
3
Overview
Trackingthepathandforecastingtheintensityofhurricanesarechallenging:
Dynamicalmodels,likeHWRF,produceasignificantmodel-measurementerror.
Accurateforecastingisverydifficulttoachieveafterlandfall.
4
Machinelearningcanbeasupplementaryapproachtotunehurricaneforecasting.
Overview
TropicalCycloneHistoryPacific:since1949,Atlantic:since1851
5
Introduction
ArtificialIntelligence
MachineLearning
NeuralNetwork
DeepNeural
Network
Deep
ConvolutionalNeuralNetwork
DeepLearning
Regressive
DeepConvolutional
NeuralNetwork
6
PAGE
7
DeepLearning
RegressiveDeepConvolutionalNeuralNetwork:
Hurricanemodel1Hurricanemodel2
…
Hurricanemodeln
Predictedhurricanepathandintensity
…
…
PAGE
8
HurricaneForecasting
Introduction
Atropicalcycloneforecastinvolvesthepredictionofseveralinterrelated
features,including:
Track,intensity,rainfall,stormsurge,areasthreatened,etc.
NationalHurricaneCenter(NHC)normallyissuesaforecastevery6hoursandupto72hours.
Officialforecastisbasedontheguidanceobtainedfromavarietyofsubjectiveandobjectivemodels.
Ensemblemodelisamainstreamapproachinhurricaneforecasting.
Machinelearning(deeplearning)isprovenasapowerfulensembletechnique.
Introduction
Dynamicalmodel
Statistical
model
ML
Ensemblemodel
Bestforhurricane
intensityforecasting
Bestforhurricanetrackforecasting
HurricaneForecasting
PAGE
10
InputModels
Summaryofglobalandregionaldynamicalmodelsfortrack,intensity,andwindradii:
ATCF*ID
ModelName
HorizontalResolution
Cycle/RunPeriod
NHCForecastParameters
NVGM/NVGI
NavyGlobalEnvironmentalModel
Spectral(~31km)
6hr(144hr)
Trackandintensity
AVNO/AVNIGFSO/GFSI
GlobalForecastSystem
Spectral(~13km)
6hr(180hr)
Trackandintensity
EMX/EMXI/EMX2
EuropeanCentreforMedium-RangeWeatherForecasts
Spectral(~9km)
12hr(240hr)
Trackandintensity
EGRR/EGRI/EGR2
U.K.MetOfficeGlobalModel
Gridpoint(~10km)
12hr(144hr)
Trackandintensity
CMC/CMCI
CanadianDeterministicPredictionSystem
Gridpoint(~25km)
12hr(240hr)
Trackandintensity
HWRF/HWFI
HurricaneWeatherResearchandForecastsystem
NestedGridpoint(18-6-2km)
6hr(126hr)
Trackandintensity
CTCX/CTCI
NRLCOAMPS-TCw/GFS
initialandboundaryconditions
NestedGridpoint(45-15-5km)
6hr(126hr)
Trackandintensity
HMON/HMNI
HurricaneMulti-scaleOcean-coupledNon-hydrostaticmodel
NestedGridpoint(18-6-2km)
6hr(126hr)
Trackandintensity
*TheAutomatedTropicalCycloneForecastingSystem(ATCF)
/modelsummary.shtml
Methodology
Input
3sub-models
DNN
Model1
Model2
.
.
.
Modeln
Track(allmodels)
Intensity(allmodels)
UHMLEnsembleHurricaneForecastingSystem:
GlobalandRegionalDynamicalModels
Output
IBTrACS:
TropicalCycloneBestTrackData
HurricaneIntensityandTrack
Track
Intensity
DNNsmodelingtimeperiod:
Trainingdata: 2003–2016
Nextstepprediction: 2017(e.g.HurricaneHarvey)
PAGE
12
Methodology
Weusedthreesub-modelsinourensemblemodel:
Intensitypredictor
Directionpredictor
Traveldistancepredictor
RegressiveDeepConvolutionalNeuralNetworkwasusedforallDNNmodels.
Afterensembletrackmodel,anEnsembleKalmanfilter(EnKF)wasusedtobias-
correctthehurricane’spath.
CNN
Model1
Model2
.
.
.
Modeln
Hurricane
Models
Output
(BestTrack)
Input
(Models)
DNN3
DNN2
DNN1
TravelDistance
Direction
Intensity
TravelDistance
Direction
Intensity
EnKF
ForecastedHurricanePathandIntensity
Methodology
EnsembleKalmanFilter(EnKF)
Ensembletrack
model(DNN2+DNN3)
Step1
Step2
Trackforecastbiases
Bias-corrected
hurricanetracks
EnKFappliedto
storms
HurricaneHarvey(2017
HurricaneHarvey(2017)
PAGE
16
Results
AllTropicalcyclones(models&besttrack)fortheNorthAtlanticin2017:
RMSEforhurricanepositionandintensity:
UHMachineLearningEnsemble(UHMLE)HurricaneModelingSystemvs.NHCofficialforecast(above)andothermodels(right).
TCLPHCCAFSSECTCIEMXIGFSIHMNIHWFIOCD5
NHCOfficial
UHMLE
Guidancemodelerrors(nmi)Intensityforecasterrors(knots)
0 20 40 60 80 100 120
Summary
Wedevelopedahybridthree-stepDNN-basedensemblehurricaneforecastingmodelwithEnsembleKalmanfilter(EnKF)post-processing.Themodelusedtheoutputofeightdynamicalhurricanemodels.
WeusedalltropicalcyclonesinAtlanticOceanfrom2003-2016andtestedthemodelfor
thosein2017.
EnKFfurtherimprovedthehurricanetrackforecastingbyreducingthebias.
ThepreliminarilyresultsshowstatisticaladvantagesoverNHCofficialforecasts–~13%
improvementintrackforecastbiasesand~30%improvementinintensityforecastbiases.
Challenges:
Long-termforecastingandfloodingpredictioncouldbechallengingduetouncertain
trainingdatasets.
Acknowledgements
ThankstoEarthScienceInformationPartner(ESIP)forseedfunding
ThankstoDr.Young-JoonKim(NOAAAFS)forprovidingausefulsuggestiononthisstudy
On-goingHurricanestudy
Imageforecastingusingadvanceddeepneuralnetwork:
ForAODandHurricanetracking
PAGE
20
Motivation
Source:airchem.snu.ac.kr
AODprediction(left)andhurricanetracking(right)arebothimageforecastingproblems…
L
HurricaneKatia
HurricaneIrma,2017(source:GOES,NOAA)
PAGE
22
Methodology
TestingImageForecastingwithAI:
Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith
Observation
justimageasinput?
Methodology
TestingImageForecastingwithAI:
Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith
Observation
justimageasinput?
Prediction
YESITCAN!
Methodology
Observation
TestingImageForecasting:Part2
CantheAIfollowtwofeaturestravelingindependentlyand
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运输公司入股合同范本
- 二零二四年度股权转让与股权质押合同3篇
- 基于多尺度融合与上下文增强的绝缘子缺陷检测
- 钢材购货合同
- 泥水班组施工工程设计变更合同(2024版)
- 技术合伙人合同范本共3
- 装修水电合同范本简单版
- 2024年度人工智能技术许可使用合同3篇
- 2024年度中介提供房产过户服务合同
- 2024年度食堂广告投放合同3篇
- 合同到期欠款补充协议
- 本科层次职业教育装备制造类专业新形态教材建设研究
- 冬季出行安全主题班会
- 2024年学生公寓住宿协议
- 幼儿园安全守护制度
- 语文-湖南(河南)省湘豫名校联考2024年11月2025届高三上学期一轮复习诊断考试暨期中考试试题和答案
- 期中测试卷(试题)-2024-2025学年一年级上册语文统编版
- 国开(内蒙古)2024年《创新创业教育基础》形考任务1-3终考任务答案
- 工法样板展示施工方案
- 盾构施工关键技术知识考试题库及答案
- 2024无障碍环境建设法知识竞赛题库及答案
评论
0/150
提交评论