




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AhybridAIhurricaneforecastingsystem:deeplearningensembleapproachandKalmanfilter
EbrahimEslamiandAIteammembersPI:Dr.YunsooChoi
DepartmentofEarthandAtmosphericSciences
UniversityofHouston
April2019
Yanniclops
AhmedKhanSalman EbrahimEslami
AlqamahSayeed
Overview
2007ThomsonHigherEducation
3
Overview
Trackingthepathandforecastingtheintensityofhurricanesarechallenging:
Dynamicalmodels,likeHWRF,produceasignificantmodel-measurementerror.
Accurateforecastingisverydifficulttoachieveafterlandfall.
4
Machinelearningcanbeasupplementaryapproachtotunehurricaneforecasting.
Overview
TropicalCycloneHistoryPacific:since1949,Atlantic:since1851
5
Introduction
ArtificialIntelligence
MachineLearning
NeuralNetwork
DeepNeural
Network
Deep
ConvolutionalNeuralNetwork
DeepLearning
Regressive
DeepConvolutional
NeuralNetwork
6
PAGE
7
DeepLearning
RegressiveDeepConvolutionalNeuralNetwork:
Hurricanemodel1Hurricanemodel2
…
Hurricanemodeln
Predictedhurricanepathandintensity
…
…
PAGE
8
HurricaneForecasting
Introduction
Atropicalcycloneforecastinvolvesthepredictionofseveralinterrelated
features,including:
Track,intensity,rainfall,stormsurge,areasthreatened,etc.
NationalHurricaneCenter(NHC)normallyissuesaforecastevery6hoursandupto72hours.
Officialforecastisbasedontheguidanceobtainedfromavarietyofsubjectiveandobjectivemodels.
Ensemblemodelisamainstreamapproachinhurricaneforecasting.
Machinelearning(deeplearning)isprovenasapowerfulensembletechnique.
Introduction
Dynamicalmodel
Statistical
model
ML
Ensemblemodel
Bestforhurricane
intensityforecasting
Bestforhurricanetrackforecasting
HurricaneForecasting
PAGE
10
InputModels
Summaryofglobalandregionaldynamicalmodelsfortrack,intensity,andwindradii:
ATCF*ID
ModelName
HorizontalResolution
Cycle/RunPeriod
NHCForecastParameters
NVGM/NVGI
NavyGlobalEnvironmentalModel
Spectral(~31km)
6hr(144hr)
Trackandintensity
AVNO/AVNIGFSO/GFSI
GlobalForecastSystem
Spectral(~13km)
6hr(180hr)
Trackandintensity
EMX/EMXI/EMX2
EuropeanCentreforMedium-RangeWeatherForecasts
Spectral(~9km)
12hr(240hr)
Trackandintensity
EGRR/EGRI/EGR2
U.K.MetOfficeGlobalModel
Gridpoint(~10km)
12hr(144hr)
Trackandintensity
CMC/CMCI
CanadianDeterministicPredictionSystem
Gridpoint(~25km)
12hr(240hr)
Trackandintensity
HWRF/HWFI
HurricaneWeatherResearchandForecastsystem
NestedGridpoint(18-6-2km)
6hr(126hr)
Trackandintensity
CTCX/CTCI
NRLCOAMPS-TCw/GFS
initialandboundaryconditions
NestedGridpoint(45-15-5km)
6hr(126hr)
Trackandintensity
HMON/HMNI
HurricaneMulti-scaleOcean-coupledNon-hydrostaticmodel
NestedGridpoint(18-6-2km)
6hr(126hr)
Trackandintensity
*TheAutomatedTropicalCycloneForecastingSystem(ATCF)
/modelsummary.shtml
Methodology
Input
3sub-models
DNN
Model1
Model2
.
.
.
Modeln
Track(allmodels)
Intensity(allmodels)
UHMLEnsembleHurricaneForecastingSystem:
GlobalandRegionalDynamicalModels
Output
IBTrACS:
TropicalCycloneBestTrackData
HurricaneIntensityandTrack
Track
Intensity
DNNsmodelingtimeperiod:
Trainingdata: 2003–2016
Nextstepprediction: 2017(e.g.HurricaneHarvey)
PAGE
12
Methodology
Weusedthreesub-modelsinourensemblemodel:
Intensitypredictor
Directionpredictor
Traveldistancepredictor
RegressiveDeepConvolutionalNeuralNetworkwasusedforallDNNmodels.
Afterensembletrackmodel,anEnsembleKalmanfilter(EnKF)wasusedtobias-
correctthehurricane’spath.
CNN
Model1
Model2
.
.
.
Modeln
Hurricane
Models
Output
(BestTrack)
Input
(Models)
DNN3
DNN2
DNN1
TravelDistance
Direction
Intensity
TravelDistance
Direction
Intensity
EnKF
ForecastedHurricanePathandIntensity
Methodology
EnsembleKalmanFilter(EnKF)
Ensembletrack
model(DNN2+DNN3)
Step1
Step2
Trackforecastbiases
Bias-corrected
hurricanetracks
EnKFappliedto
storms
HurricaneHarvey(2017
HurricaneHarvey(2017)
PAGE
16
Results
AllTropicalcyclones(models&besttrack)fortheNorthAtlanticin2017:
RMSEforhurricanepositionandintensity:
UHMachineLearningEnsemble(UHMLE)HurricaneModelingSystemvs.NHCofficialforecast(above)andothermodels(right).
TCLPHCCAFSSECTCIEMXIGFSIHMNIHWFIOCD5
NHCOfficial
UHMLE
Guidancemodelerrors(nmi)Intensityforecasterrors(knots)
0 20 40 60 80 100 120
Summary
Wedevelopedahybridthree-stepDNN-basedensemblehurricaneforecastingmodelwithEnsembleKalmanfilter(EnKF)post-processing.Themodelusedtheoutputofeightdynamicalhurricanemodels.
WeusedalltropicalcyclonesinAtlanticOceanfrom2003-2016andtestedthemodelfor
thosein2017.
EnKFfurtherimprovedthehurricanetrackforecastingbyreducingthebias.
ThepreliminarilyresultsshowstatisticaladvantagesoverNHCofficialforecasts–~13%
improvementintrackforecastbiasesand~30%improvementinintensityforecastbiases.
Challenges:
Long-termforecastingandfloodingpredictioncouldbechallengingduetouncertain
trainingdatasets.
Acknowledgements
ThankstoEarthScienceInformationPartner(ESIP)forseedfunding
ThankstoDr.Young-JoonKim(NOAAAFS)forprovidingausefulsuggestiononthisstudy
On-goingHurricanestudy
Imageforecastingusingadvanceddeepneuralnetwork:
ForAODandHurricanetracking
PAGE
20
Motivation
Source:airchem.snu.ac.kr
AODprediction(left)andhurricanetracking(right)arebothimageforecastingproblems…
L
HurricaneKatia
HurricaneIrma,2017(source:GOES,NOAA)
PAGE
22
Methodology
TestingImageForecastingwithAI:
Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith
Observation
justimageasinput?
Methodology
TestingImageForecastingwithAI:
Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith
Observation
justimageasinput?
Prediction
YESITCAN!
Methodology
Observation
TestingImageForecasting:Part2
CantheAIfollowtwofeaturestravelingindependentlyand
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人土地无偿赠与合同范本
- 个人家政保洁合同范本
- 制定合同范本 作用
- fidic条件合同范本
- 买卖延期合同范本
- 医用机甲租赁合同范本
- 净水设备售卖合同范本
- 劳动合同范本药店
- 出租和谐公寓合同范本
- 修建垃圾台合同范本
- 2024年山东交通职业学院高职单招语文历年参考题库含答案解析
- 万兆小区方案及实施路径
- 2025年高压电工作业考试国家总局题库及答案(共280题)
- 初中图书室阅览室建设实施方案范文(2篇)
- 印刷公司生产部2025年年度工作总结及2025年工作计划
- 2025年中考语文一轮复习:八年级下册知识点梳理
- 小班孵鸡蛋课程设计
- 糖尿病的麻醉管理
- 《商务沟通-策略、方法与案例》课件 第四章 非言语沟通
- 2024-2025学年度七年级上册数学期末实际问题应用题-盈亏问题提升训练含答案
- 附件2:福建省建设工程造价咨询服务收费指导价
评论
0/150
提交评论