混合人工智能飓风预报系统:深度学习集成方法和卡尔曼滤波器_第1页
混合人工智能飓风预报系统:深度学习集成方法和卡尔曼滤波器_第2页
混合人工智能飓风预报系统:深度学习集成方法和卡尔曼滤波器_第3页
混合人工智能飓风预报系统:深度学习集成方法和卡尔曼滤波器_第4页
混合人工智能飓风预报系统:深度学习集成方法和卡尔曼滤波器_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AhybridAIhurricaneforecastingsystem:deeplearningensembleapproachandKalmanfilter

EbrahimEslamiandAIteammembersPI:Dr.YunsooChoi

DepartmentofEarthandAtmosphericSciences

UniversityofHouston

April2019

Yanniclops

AhmedKhanSalman EbrahimEslami

AlqamahSayeed

Overview

2007ThomsonHigherEducation

3

Overview

Trackingthepathandforecastingtheintensityofhurricanesarechallenging:

Dynamicalmodels,likeHWRF,produceasignificantmodel-measurementerror.

Accurateforecastingisverydifficulttoachieveafterlandfall.

4

Machinelearningcanbeasupplementaryapproachtotunehurricaneforecasting.

Overview

TropicalCycloneHistoryPacific:since1949,Atlantic:since1851

5

Introduction

ArtificialIntelligence

MachineLearning

NeuralNetwork

DeepNeural

Network

Deep

ConvolutionalNeuralNetwork

DeepLearning

Regressive

DeepConvolutional

NeuralNetwork

6

PAGE

7

DeepLearning

RegressiveDeepConvolutionalNeuralNetwork:

Hurricanemodel1Hurricanemodel2

Hurricanemodeln

Predictedhurricanepathandintensity

PAGE

8

HurricaneForecasting

Introduction

Atropicalcycloneforecastinvolvesthepredictionofseveralinterrelated

features,including:

Track,intensity,rainfall,stormsurge,areasthreatened,etc.

NationalHurricaneCenter(NHC)normallyissuesaforecastevery6hoursandupto72hours.

Officialforecastisbasedontheguidanceobtainedfromavarietyofsubjectiveandobjectivemodels.

Ensemblemodelisamainstreamapproachinhurricaneforecasting.

Machinelearning(deeplearning)isprovenasapowerfulensembletechnique.

Introduction

Dynamicalmodel

Statistical

model

ML

Ensemblemodel

Bestforhurricane

intensityforecasting

Bestforhurricanetrackforecasting

HurricaneForecasting

PAGE

10

InputModels

Summaryofglobalandregionaldynamicalmodelsfortrack,intensity,andwindradii:

ATCF*ID

ModelName

HorizontalResolution

Cycle/RunPeriod

NHCForecastParameters

NVGM/NVGI

NavyGlobalEnvironmentalModel

Spectral(~31km)

6hr(144hr)

Trackandintensity

AVNO/AVNIGFSO/GFSI

GlobalForecastSystem

Spectral(~13km)

6hr(180hr)

Trackandintensity

EMX/EMXI/EMX2

EuropeanCentreforMedium-RangeWeatherForecasts

Spectral(~9km)

12hr(240hr)

Trackandintensity

EGRR/EGRI/EGR2

U.K.MetOfficeGlobalModel

Gridpoint(~10km)

12hr(144hr)

Trackandintensity

CMC/CMCI

CanadianDeterministicPredictionSystem

Gridpoint(~25km)

12hr(240hr)

Trackandintensity

HWRF/HWFI

HurricaneWeatherResearchandForecastsystem

NestedGridpoint(18-6-2km)

6hr(126hr)

Trackandintensity

CTCX/CTCI

NRLCOAMPS-TCw/GFS

initialandboundaryconditions

NestedGridpoint(45-15-5km)

6hr(126hr)

Trackandintensity

HMON/HMNI

HurricaneMulti-scaleOcean-coupledNon-hydrostaticmodel

NestedGridpoint(18-6-2km)

6hr(126hr)

Trackandintensity

*TheAutomatedTropicalCycloneForecastingSystem(ATCF)

/modelsummary.shtml

Methodology

Input

3sub-models

DNN

Model1

Model2

.

.

.

Modeln

Track(allmodels)

Intensity(allmodels)

UHMLEnsembleHurricaneForecastingSystem:

GlobalandRegionalDynamicalModels

Output

IBTrACS:

TropicalCycloneBestTrackData

HurricaneIntensityandTrack

Track

Intensity

DNNsmodelingtimeperiod:

Trainingdata: 2003–2016

Nextstepprediction: 2017(e.g.HurricaneHarvey)

PAGE

12

Methodology

Weusedthreesub-modelsinourensemblemodel:

Intensitypredictor

Directionpredictor

Traveldistancepredictor

RegressiveDeepConvolutionalNeuralNetworkwasusedforallDNNmodels.

Afterensembletrackmodel,anEnsembleKalmanfilter(EnKF)wasusedtobias-

correctthehurricane’spath.

CNN

Model1

Model2

.

.

.

Modeln

Hurricane

Models

Output

(BestTrack)

Input

(Models)

DNN3

DNN2

DNN1

TravelDistance

Direction

Intensity

TravelDistance

Direction

Intensity

EnKF

ForecastedHurricanePathandIntensity

Methodology

EnsembleKalmanFilter(EnKF)

Ensembletrack

model(DNN2+DNN3)

Step1

Step2

Trackforecastbiases

Bias-corrected

hurricanetracks

EnKFappliedto

storms

HurricaneHarvey(2017

HurricaneHarvey(2017)

PAGE

16

Results

AllTropicalcyclones(models&besttrack)fortheNorthAtlanticin2017:

RMSEforhurricanepositionandintensity:

UHMachineLearningEnsemble(UHMLE)HurricaneModelingSystemvs.NHCofficialforecast(above)andothermodels(right).

TCLPHCCAFSSECTCIEMXIGFSIHMNIHWFIOCD5

NHCOfficial

UHMLE

Guidancemodelerrors(nmi)Intensityforecasterrors(knots)

0 20 40 60 80 100 120

Summary

Wedevelopedahybridthree-stepDNN-basedensemblehurricaneforecastingmodelwithEnsembleKalmanfilter(EnKF)post-processing.Themodelusedtheoutputofeightdynamicalhurricanemodels.

WeusedalltropicalcyclonesinAtlanticOceanfrom2003-2016andtestedthemodelfor

thosein2017.

EnKFfurtherimprovedthehurricanetrackforecastingbyreducingthebias.

ThepreliminarilyresultsshowstatisticaladvantagesoverNHCofficialforecasts–~13%

improvementintrackforecastbiasesand~30%improvementinintensityforecastbiases.

Challenges:

Long-termforecastingandfloodingpredictioncouldbechallengingduetouncertain

trainingdatasets.

Acknowledgements

ThankstoEarthScienceInformationPartner(ESIP)forseedfunding

ThankstoDr.Young-JoonKim(NOAAAFS)forprovidingausefulsuggestiononthisstudy

On-goingHurricanestudy

Imageforecastingusingadvanceddeepneuralnetwork:

ForAODandHurricanetracking

PAGE

20

Motivation

Source:airchem.snu.ac.kr

AODprediction(left)andhurricanetracking(right)arebothimageforecastingproblems…

L

HurricaneKatia

HurricaneIrma,2017(source:GOES,NOAA)

PAGE

22

Methodology

TestingImageForecastingwithAI:

Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith

Observation

justimageasinput?

Methodology

TestingImageForecastingwithAI:

Question:CanAIpredictbasicmovementsfromjustreceivingpreviousstateswith

Observation

justimageasinput?

Prediction

YESITCAN!

Methodology

Observation

TestingImageForecasting:Part2

CantheAIfollowtwofeaturestravelingindependentlyand

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论