2023-2024学年江苏省兴化市市级名校中考二模数学试题含解析_第1页
2023-2024学年江苏省兴化市市级名校中考二模数学试题含解析_第2页
2023-2024学年江苏省兴化市市级名校中考二模数学试题含解析_第3页
2023-2024学年江苏省兴化市市级名校中考二模数学试题含解析_第4页
2023-2024学年江苏省兴化市市级名校中考二模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省兴化市市级名校中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图是正方体的表面展开图,则与“前”字相对的字是()A.认 B.真 C.复 D.习2.下列计算正确的是()A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab33.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是64.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.5.若二次函数的图像与轴有两个交点,则实数的取值范围是()A. B. C. D.6.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.125° B.75° C.65° D.55°7.下列4个数:,,π,()0,其中无理数是()A. B. C.π D.()08.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A. B. C. D.9.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,610.若代数式在实数范围内有意义,则x的取值范围是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.12.a(a+b)﹣b(a+b)=_____.13.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为5,则△ABC的面积是________.14.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.15.抛物线y=(x+1)2-2的顶点坐标是______.16.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.三、解答题(共8题,共72分)17.(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)18.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.19.(8分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.20.(8分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.21.(8分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.22.(10分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345y/cm6.04.84.56.07.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.23.(12分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.24.随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.2、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.3、D【解析】

根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.4、D【解析】

根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.【详解】由题意可得,去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,故选:D.【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.5、D【解析】

由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.6、D【解析】

延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°−∠1=180°−125°=55°.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.7、C【解析】=3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.8、C【解析】连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故选C.9、C【解析】

解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选C.【点睛】本题考查众数;算术平均数;中位数.10、D【解析】试题解析:要使分式有意义,则1-x≠0,解得:x≠1.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、(15﹣5)【解析】

先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.【详解】∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.12、(a+b)(a﹣b).【解析】

先确定公因式为(a+b),然后提取公因式后整理即可.【详解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.13、【解析】

如图,过C作CD⊥y轴于D,交AB于E.设AB=2a,则BE=AE=CE=a,再设A(x,x),则B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函数的图象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面积为5求得ax=5,即可得a2=,根据S△ABC=AB•CE即可求解.【详解】如图,过C作CD⊥y轴于D,交AB于E.∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),∵B、C在反比例函数的图象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S△OAB=AB•DE=•2a•x=5,∴ax=5,∴3a2=5,∴a2=,∴S△ABC=AB•CE=•2a•a=a2=.故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.14、3或【解析】

以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.【详解】如图作CM⊥AB当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,设EF交AD于点O∵AO=OD,OE∥BD∴AE=EB=3当∠FED=∠DEB时则∠FED=∠FEA=∠DEB=60°此时△FED~△DEB,设AE=ED=x,作DN⊥AB于N,则EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案为3或【点睛】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.15、(-1,-2)【解析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.16、【解析】

由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.三、解答题(共8题,共72分)17、调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析:Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.试题解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.18、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】

(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.19、48;105°;2【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考点:统计图、概率的计算.20、(1)证明见解析;(2)AE=23BF,(3)AE=m【解析】

(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=mn【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如图2中,结论:AE=23理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)结论:AE=mn理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.21、(1)直线的解析式为:.(2)平移的时间为5秒.【解析】

(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.【详解】(1)由题意得,∴点坐标为.∵在中,,,∴点的坐标为.设直线的解析式为,由过、两点,得,解得,∴直线的解析式为:.(2)如图,设平移秒后到处与第一次外切于点,与轴相切于点,连接,.则,∵轴,∴,在中,.∵,∴,∴(秒),∴平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.22、(1)2.1;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论