2024届内蒙古自治区巴彦淖尔联考中考数学考试模拟冲刺卷含解析_第1页
2024届内蒙古自治区巴彦淖尔联考中考数学考试模拟冲刺卷含解析_第2页
2024届内蒙古自治区巴彦淖尔联考中考数学考试模拟冲刺卷含解析_第3页
2024届内蒙古自治区巴彦淖尔联考中考数学考试模拟冲刺卷含解析_第4页
2024届内蒙古自治区巴彦淖尔联考中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古自治区巴彦淖尔联考中考数学考试模拟冲刺卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图,在中,,,,点分别在上,于,则的面积为()A. B. C. D.2.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率3.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m> B.m>4C.m<4 D.<m<44.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A. B. C. D.5.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)6.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.7.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A. B. C. D.8.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.39.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8 B.9 C.5+ D.5+10.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.12.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为cm.13.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.14.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.15.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.16.如图,在中,,,,,,点在上,交于点,交于点,当时,________.三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求⊙O的半径.18.(8分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).19.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.20.(8分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?21.(8分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?22.(10分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.23.(12分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求证:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的长.24.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如图2,过点P作PE⊥BC于E,

在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.2、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.3、B【解析】

根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式组的解集是m>1,

即m的取值范围是m>1.

故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、A【解析】

由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【详解】∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故选:A.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.5、D【解析】

设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A、A′关于点C对称,

设点A的坐标是(x,y),

=0,

=-1,

解得x=-a,y=-b-2,

∴点A的坐标是(-a,-b-2).

故选D.【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键6、B【解析】

根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.7、D【解析】

根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.8、D【解析】

直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.9、C【解析】

过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【详解】过点C作CM⊥AB,垂足为M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是线段AC的垂直平分线,∴AD=DC,∵∠A=60°,∴△ADC等边三角形,∴CD=AD=AC=4,∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案选C.【点睛】本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.10、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象二、填空题(本大题共6个小题,每小题3分,共18分)11、65°【解析】因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.12、3【解析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,13、9【解析】解:360÷40=9,即这个多边形的边数是914、1:1【解析】

根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=()2=1:16,∴S△BDE:S四边形DECA=1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15、2.40,2.1.【解析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它们的中位数为2.40,众数为2.1.故答案为2.40,2.1.点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.16、1【解析】

如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.【详解】如图,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案为:1.【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题(共8题,共72分)17、(1)AE与⊙O相切.理由见解析.(2)2.1【解析】

(1)连接OM,则OM=OB,利用平行的判定和性质得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性质和切线的判定即可得证;(2)设⊙O的半径为r,则AO=12﹣r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM∽△ABE,根据相似三角形的性质即可求解.【详解】解:(1)AE与⊙O相切.理由如下:连接OM,则OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,设⊙O的半径为r,则AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半径为2.1.18、(1)1;(2).【解析】

(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【详解】(1)如图,∵DE∥BC,且DE=BC,∴.又AC=6,∴AE=1.(2)∵,,∴.又DE∥BC,DE=BC,∴【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.19、两人之中至少有一人直行的概率为.【解析】【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.20、(1)见解析(2)A-国学诵读(3)360人【解析】

(1)根据统计图中C的人数和所占百分比可求出被调查的总人数,进而求出活动B和D人数,故可补全条形统计图;(2)由条形统计图知众数为“A-国学诵读”(3)先求出参加活动A的占比,再乘以全校人数即可.【详解】(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:(2)由条形统计图知众数为“A-国学诵读”;(3)由题意得全校学生希望参加活动A的人数为800×=360(人)【点睛】此题主要考查统计图的应用,解题的关键是根据题意求出调查的总人数再进行求解.21、15天【解析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.22、(1)证明见解析;(2)CE∥AD,理由见解析;(3).【解析】

(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;(3)根据相似三角形的性质列出比例式,计算即可.【详解】解:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,又∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB;(2)CE∥AD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论