版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年云南省昆明市八校联考中考数学猜题卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°2.小明解方程的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.① B.② C.③ D.④3.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则()A. B. C. D.4.下列命题是真命题的是()A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形5.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=xA.512B.49C.176.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>37.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40° B.45° C.50° D.55°8.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab9.下列命题中,真命题是()A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离10.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取()A.11; B.6; C.3; D.1.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.12.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.13.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.14.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.15.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是__.16.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=___________°.三、解答题(共8题,共72分)17.(8分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.7518.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).19.(8分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.20.(8分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.21.(8分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(10分)如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC.求证:△BDA∽△CED.23.(12分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.24.化简:
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.2、A【解析】
根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【详解】=1,去分母,得1-(x-2)=x,故①错误,故选A.【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.3、C【解析】
连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,
∵AB是直径,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C=(180°-50°)=65°,
故选:C.【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.4、D【解析】
根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.5、C【解析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=1736故选C.点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.6、B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061447、D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质8、B【解析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.9、D【解析】
根据两圆的位置关系、直线和圆的位置关系判断即可.【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;故选:D.【点睛】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.10、D【解析】∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,∴上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】试题解析:连接EG,
∵由作图可知AD=AE,AG是∠BAD的平分线,
∴∠1=∠2,
∴AG⊥DE,OD=DE=1.
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠2=∠1,
∴∠1=∠1,
∴AD=DG.
∵AG⊥DE,
∴OA=AG.
在Rt△AOD中,OA==4,
∴AG=2AO=2.
故答案为2.12、3【解析】
由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】∵△A'DE与△ADE关于直线DE对称,∴AD=A'D,AE=A'E,C阴影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.13、1【解析】
由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为:1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.14、10或1【解析】
分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【详解】如图,作半径于C,连接OB,由垂径定理得:=AB=×60=30cm,在中,,当水位上升到圆心以下时
水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1.【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.15、m>2【解析】试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣2>2.解:因为抛物线y=(m﹣2)x2的开口向上,所以m﹣2>2,即m>2,故m的取值范围是m>2.考点:二次函数的性质.16、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分线DE交AC于点D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.三、解答题(共8题,共72分)17、景点A与B之间的距离大约为280米【解析】
由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC和BC的长.【详解】解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,由题意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景点A与B之间的距离大约为280米.【点睛】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18、(1)见解析;(2)【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积=S扇形ODE=.19、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.【解析】
(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;(2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.【详解】解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,解得:;∴该抛物线的解析式为y=x2﹣3x+1,过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴点K(1,),设直线CK的解析式为y=hx+1,将点K(1,)代入上式,得=1h+1.解得h=﹣,∴直线CK的解析式为y=﹣x+1,设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,将方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合题意,舍去)将x1=代入y=﹣x+1,得y=,∴点P的坐标为(,),∴m=;(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴yC=yD=1,将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴点D(6,1),根据题意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①当1<m<6时,DM=6﹣m,如图3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四边形ADMQ是平行四边形.②当m>6时,同理可得:四边形ADMQ是平行四边形.综上,四边形ADMQ是平行四边形.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.20、(1),点D的坐标为(2,-8)(2)点F的坐标为(7,)或(5,)(3)菱形对角线MN的长为或.【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴抛物线的解析式为.∵=,∴点D的坐标为(2,-8).(2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).当x=7时,y=,∴点F的坐标为(7,).当点F在x轴下方时,设同理求得点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,).(3)∵点P在x轴上,∴根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.∵PQ=MN,∴MT=2PT.设TP=n,则MT=2n.∴M(2+2n,n).∵点M在抛物线上,∴,即.解得,(舍去).∴MN=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).∵点M在抛物线上,∴,即.解得,(舍去).∴MN=2MT=4n=.综上所述,菱形对角线MN的长为或.点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.21、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣州美业课程设计公司
- 营销技巧培训课程设计
- 课程设计跨境电子商务
- 齿花键套课程设计
- 虚拟供应链讲解课程设计
- 陈列搭配技巧课程设计
- 送水泵站课程设计怎么画
- 语言生命教育课程设计
- 语文课程设计师
- 高中物理课程设计依据
- 2024-2025学年人教版数学六年级上册 期末综合试卷(含答案)
- 无创通气基本模式
- 飞行原理(第二版) 课件 第4章 飞机的平衡、稳定性和操纵性
- 暨南大学珠海校区财务办招考财务工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 羊水少治疗护理查房
- 中华人民共和国保守国家秘密法实施条例培训课件
- 管道坡口技术培训
- OQC培训资料教学课件
- 2024年8月CCAA国家注册审核员OHSMS职业健康安全管理体系基础知识考试题目含解析
- 体育赛事组织与实施操作手册
- 2024年浙江省公务员考试结构化面试真题试题试卷答案解析
评论
0/150
提交评论