版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省莆田市城厢区市级名校2024年中考五模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.二次函数的图像如图所示,下列结论正确是()A. B. C. D.有两个不相等的实数根2.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10-xA.平均数、中位数 B.众数、方差 C.平均数、方差 D.众数、中位数3.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.24.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是()A.5 B.﹣2 C.2 D.﹣15.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)6.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧 B.点A点B之间C.点B点C之间 D.点C的右侧7.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10° B.15° C.20° D.25°8.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.169.下列图形中,是中心对称图形,但不是轴对称图形的是()A. B.C. D.10.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15° B.30° C.45° D.60°二、填空题(共7小题,每小题3分,满分21分)11.已知数据x1,x2,…,xn的平均数是,则一组新数据x1+8,x2+8,…,xn+8的平均数是____.12.关于的一元二次方程有两个不相等的实数根,请你写出一个满足条件的值__________.13.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.14.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)15.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为______.16.分解因式8x2y﹣2y=_____.17.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.三、解答题(共7小题,满分69分)18.(10分)如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且OEEB求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.19.(5分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)20.(8分)计算:解方程:21.(10分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.22.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.23.(12分)一次函数的图象经过点和点,求一次函数的解析式.24.(14分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;当x=-1时,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C选项正确;∵抛物线的顶点为(1,3),∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.2、D【解析】
由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.【详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.故选D.3、D【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4、A【解析】试题分析:原式=1-(-3)+=1+3+1=5,故选A.5、C【解析】
因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.6、C【解析】分析:根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.详解:A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.7、A【解析】
先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.8、B【解析】
根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.9、A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.10、B【解析】
根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
根据数据x1,x2,…,xn的平均数为=(x1+x2+…+xn),即可求出数据x1+1,x2+1,…,xn+1的平均数.【详解】数据x1+1,x2+1,…,xn+1的平均数=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案为+1.【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.12、1【解析】
先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.【详解】解得所以可以取故答案为:1.【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.13、4n+2【解析】∵第1个有:6=4×1+2;第2个有:10=4×2+2;第3个有:14=4×3+2;……∴第1个有:4n+2;故答案为4n+214、4【解析】
根据圆柱的侧面积公式,计算即可.【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故答案为:4π.【点睛】题考查了圆柱的侧面积公式应用问题,是基础题.15、4cm【解析】
求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【详解】扇形的弧长==4π,
圆锥的底面半径为4π÷2π=2,
故圆锥的高为:=4,
故答案为4cm.【点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.16、2y(2x+1)(2x﹣1)【解析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案为2y(2x+1)(2x-1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17、17℃.【解析】
根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃.【详解】解:返回舱的最高温度为:21+4=25℃;返回舱的最低温度为:21-4=17℃;故答案为:17℃.【点睛】本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)BH=125【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=1∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.19、30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,∴AE=DE×tan∠1=40×tan30°=40×≈40×1.73×≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.20、(1)10;(2)原方程无解.【解析】
(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式==10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21、(1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.【解析】
(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情况讨论求解即可.(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.【详解】解:(1)如图,过点P做PE⊥AD于点E由已知,AP=PQ,∠APQ=90°∴△APQ为等腰直角三角形∴∠PAQ=∠PAB=45°设PE=x,则AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的长为•2π•=π.故答案为45,,π.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0•BD∴9=BP×5∴BP=同理,当点Q位于BD下方时,可求得BP=故BP的长为或(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF===5过点C做CH⊥EF于点H由面积法可知CH===∴CQ的取值范围为:≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.22、(1)60°;(2)证明略;(3)【解析】
(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外部空间设计合同(2篇)
- 2024新舞蹈工作室舞蹈课程开发合同协议3篇
- 6观察云(说课稿)-2024-2025学年三年级上册科学教科版
- 2024水电预埋施工与运维一体化承包合同3篇
- 2024抖音平台年度品牌合作宣传合同范本3篇
- 泵车承包给司机合同
- 2024汽配企业员工培训及劳务派遣合同范本3篇
- 中学生体育比赛报道征文
- 保温管购销合同范本
- 专业个人协作协议2024年版版
- 小学五年级上册数学寒假作业每日一练
- 三年级上册语文期末考试作文押题预测
- 2025年首都机场集团招聘笔试参考题库含答案解析
- 2025年医院院感工作计划
- 2024年陕西省安全员《A证》考试题库及答案
- 2024-2025学年华东师大新版八年级上册数学期末复习试卷(含详解)
- 《道路车辆 48V供电电压的电气及电子部件 电性能要求和试验方法》文本以及编制说明
- 供货进度计划及保证措施
- 北师大版二年级《数学》下册单元测试卷
- 十八项医疗核心制度考试题与答案
- 2024年鄂尔多斯市国资产投资控股集团限公司招聘管理单位遴选500模拟题附带答案详解
评论
0/150
提交评论