考向10 函数与导数(重点)-2023年高考数学一轮复习考点微(解析版)_第1页
考向10 函数与导数(重点)-2023年高考数学一轮复习考点微(解析版)_第2页
考向10 函数与导数(重点)-2023年高考数学一轮复习考点微(解析版)_第3页
考向10 函数与导数(重点)-2023年高考数学一轮复习考点微(解析版)_第4页
考向10 函数与导数(重点)-2023年高考数学一轮复习考点微(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考向10函数与导数

A

1.12022年全国甲卷第6题】6.当x=l时,函数/1(23x)=alnx+X取得最大值一2,则r(2)=

x

A.-1B.--C.-D.1

22

【答案】B

【解析】r(x)=--4-由条件,得,所以。=6=一2,即尸(幻=—2+2,

xxr1^/(\)=a-b=QXX-

991

所以r(2)=—]+万7=-Q.故选B.

2.【2022年乙卷文科第11题】11.函数/(x)=cosx+第+I)sin%+1在区间[0,2羽的最小值、

最大值分别为

A.B.C.--,-+2D.--,-+2

22222222

【答案】D

【解析】r(x)=(x+l)cosx,当xc(0,立时,r(x)>0;当X呜苧时,r(x)<0.当

xw考,2兀)时,尸(x)>0.所以,〃x)极小值=樗)=-4;八幻极大值=展)=>2.又

)(0)=。(2兀)=2,所以八幻…樗)=售;/(%)_=吗='+2.故选D.

3.【2022年新高考1卷第10题】10.已知函数〃x)=x3—x+1,则()

A.f(x)有两个极值点B./⑶有三个零点

C.点(0,1)是曲线y=/(x)的对称中心D,直线y=2x是曲线y=『(x)的切

线

【答案】AC

【解析】由题,/'(力=3/一1,令r(x)>。得走或

令ra)<o得一正<》<走,

33

所以/(X)在(一上单调递减,在(-8,—,+8)上单调递增,

所以x=±立是极值点,故A正确;

3

因-*)=1+孚>0,=1一手>0,/(-2)=-5<0,

所以,函数/(x)在上有一个零点,

当小叵

时,即函数/(x)在上无零点,

3

综上所述,函数"X)有一个零点,故B错误;

令/z(x)=x3-x,该函数的定义域为R,=(-X)3-(-X)=-X3+x=-/z(x),

则h(x)是奇函数,(0,0)是/z(x)的对称中心,

将"x)的图象向上移动一个单位得到/⑶的图象,

所以点(0,D是曲线),=/(x)的对称中心,故C正确;

令/'(x)=3/7=2,可得x=±l,X/(D=/(-1)=1.

当切点为(U)时,切线方程为y=2x-l,当切点为(一1,1)时,切线方程为y=2x+3,

故D错误.

故选:AC

4.【2022年新高考1卷第12题】12.已知函数/*)及其导函数/'(X)的定义域均为R,记

g(x)=7'(x),若y1|—2x),g(2+x)均为偶函数,则()

A./(0)=0B.g"=0C./(-1)=/(4)D.

g(-D=g(2)

【答案】BC

【解析】因为g(2+x)均为偶函数,

所以/(1一2%)=/(1+2尤)即/[|■一%]=/|+^>g(2+x)=g(2—x),

所以〃3—x)=/(x),g(4-x)=g(x),则f(T)=f(4),故C正确;

3

函数”x),g(x)的图象分别关于直线x=—,X=2对称,

2

又g(X)=/'(X),且函数f(x)可导,

所以g(£|=0,g(3—尤)=—g(x),

所以g(4-x)=g(x)=-g(3-x),所以g(x+2)=_g(x+l)=g(x),

所以g1一;J=g(;)=O,g(—l)=g(l)=-g(2),故B正确,D错误;

若函数/(x)满足题设条件,则函数/(x)+C(C为常数)也满足题设条件,所以无法确定fM

的函数值,故A错误.

故选:BC.

5.[2022年新高考2卷笫14题】写出曲线y=In|x|过坐标原点的切线方程:,

【答案】①.y=-%②.y=--x

ee

【解析】因为y=lnW,当x>0时y=lnx,设切点为(x(),ln玉J,山了=一,所以

)''1.、气=一,所以切线方程为y-E/=」-(%-/),又切线过坐标原点,所以

/X。

-lnx0=—(-x0),解得%=e,所以切线方程为>一—e),即丁=!工;

xoee

当尤<0时y=ln(—x),设切点为(小In(—石)),由y'=L所以所以切线

X玉

方程为y—ln(-xj=」-(x—玉),

x\

又切线过坐标原点,所以一In(一芯)=一(一%),解得%=-e,所以切线方程为

y—1=—(x+e),即,=—x;故答案为:y=—x;y=­x

-eeee

6.【2022年新高考1卷第15题】若曲线y=(x+〃)e、有两条过坐标原点的切线,则。的取值

范围是.

【答案】(0,+oo)

【解析】易得曲线不过原点,设切点为(毛,(/+a)e"),则切线斜率为:

尸(%)=(%+〃+l)e”.可得切线方程为y-(Xo+〃)e&=(/+〃+1)已"0-%),又切线过原点,

可得-(x0+a)e%=-%5+。+1)八,化筒得x;+啄一。=。(※),又切线有两条,即※

方程有两不等实根,由判别式△=。2+4。〉0,得a<Y,或a>0.

7.[2022年乙卷理科第16题】已知》=尤1和X=X2分别是函数

/(x)=2优—”2(。>0且awl)的极小值点和极大值点,若%</,则a的取值范围是

【答案】(o3)

【解析】/4)=电'111。一封至少要有两个零点%=%和X=%2,我们对其求导,

/(x)=2a*(lnaI-Ie,

(1)若以>1,则/"(x)在R上单调递增,此时若广(%)=0,则/(无)在(一8,%)上单调

递减,在(通,+8)上单调递增,此时若有%=玉和x=%2分别是函数

/(x)=2ax-ex2(a>。且a丰1)的极小值点和极大值点,则%>£,不符合题意。

(2)若0<a<l,则/"(x)在R上单调递减,此时若/”(%)=0,则f(x)在(一8,/)上

单调递增,在&,+0。)上单调递减,目此时若有》=石和X=X,分

(Ina)

别是函数/⑴=2优一Q2①>0且owl)的极小值点和极大值点,且占<9,则需满

足/(%())>。,即

—^―>ek>g〃7~~>*=>Ina”">in'=>---InQ>1-In(ina)?,

Ina"(Ina](ina)2(ina)2ln«V7

可解得a>e或0<a<L,由于0<a<l,取交集即得0<a<L。

1.求曲线月'⑴的切线方程的类型及方法

(1)已知切点P(xo,yo),求y=f(x)过点尸的切线方程:求出切线的斜率广(刈),由点斜式写

出方程;

(2)已知切线的斜率为%求y=/(x)的切线方程:设切点尸(如刈),通过方程6广(xo)解得

xo,再由点斜式写出方程;

(3)已知切线上一点(非切点),求月'(X)的切线方程:设切点P(xo,yo),利用导数求得切线

斜率/'(xo),再由斜率公式求得切线斜率,列方程(组)解得XO,最后由点斜式或两点式

写出方程.

(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确

定切线的斜率,再由勺/(向)求出切点坐标(xo,州),最后写出切线方程.

(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.

②过点P的切线即切线过点P,P不一定是切点.因此在求过点尸的切线方程时,应首

先检验点尸是否在已知曲线上.

2.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式

r(x)>o(尸(x)<o)在给定区间上恒成立.一般步骤为:

(1)求尸(力;

(2)确认/㈤在(〃,切内的符号;

(3)作出结论,/(幻>0时为增函数,_f(x)<0时为减函数.

注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类

讨论.

3.由函数/(力的单调性求参数的取值范围的方法

(1)可导函数在某一区间上单调,实际上就是在该区间上/'(x)20(或

r(x)wo)(r(x)在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转

化为求函数的最值问题,从而获得参数的取值范围;

(2)可导函数在某一区间上存在单调区间,实际上就是/'(x)>0(或/'(x)<0)在该区

间上存在解集,这样就把函数的单调性问题转化成了不等式问题;

(3)若已知/(x)在区间/上的单调性,区间/中含有参数时,可先求出/(%)的单调

区间,令/是其单调区间的子集,从而可求出参数的取值范围.

4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有

一个零点,再利用导数判断在所给区间内的单调性,由此求解.

5.求函数/(x)在他,句上最值的方法

(1)若函数f(x)在[a,句上单调递增或递减,/5)与一个为最大值,一个为最小值.

(2)若函数/(x)在区间3,份内有极值,先求出函数/(x)在区间①,份上的极值,与/(a)、

人力比较,其中最大的一个是最大值,最小的一个是最小值.

(3)函数f(x)在区间(a,公上有唯一一个极值点时.,这个极值点就是最大(或最小)值点.

注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.

(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最

值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定.

6.利用导数解决不等式恒成立问题的“两种”常用方法:

(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数

求该函数的最值,根据要求得所求范围.一般地,)(幻2。恒成立,只需/(无)之。即

可;/(x)4a恒成立,只需/(X)maxW”即可.

(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数

的极值(最值),然后构建不等式求解.

易错点1:导数与函数的单调性

导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,

对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、

微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)

利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.

易错点2:导数与函数的极(最)值

求函数./U)在m,句上的最大值和最小值的步骤

(1)求函数在3,勿内的极值;

(2)求函数在区间端点的函数值_Aa),氏b);

(3)将函数/U)的各极值与犬a),犬公比较,其中最大的一个为最大值,最小的一个为最小值。

易错点3:对“导函数值正负”与“原函数图象升降”关系不清楚

(x)>OoxwAUBU…。/(X)增区间为4,8和…

1(x)<0oxeCU。U…o/(尤)增区间为C,。和...

xeW/'(x)>0=>/(x)在区间。上为增函数

xem/'(x)<0=>/(x)在区间。上为减函数

X€。时r(x)=0n/(x)在区间。上为常函数

讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论.

一、单选题

1.曲线y=xe,+2x-2在x=0处的切线方程是()

A.3x+y+2=0B.2x+y+2=0

C.2x-y-2=0D.3x-y-2=0

【答案】D

【解析】y=xex+2x-2,则y'=(x+l)e"+2,当x=0时,、=-2,y^=3,

所以切线方程为y—(—2)=3x,即3x-y—2=0.

故选:D.

2.已知函数/(x)的导函数为了'(X),且满足〃x)=2矿⑴+lnx,则r(1)=()

A.-eB.-1C.1D.e

【答案】B

【解析】由题意,函数〃x)=2#〈l)+lnx,可得((无)=2-⑴+J

所以/'(1)=2/'(1)+1,则f(l)=T.故选:B.

3.曲线y=xln(2x+5)在x=-2处的切线方程为()

A.4x—y+8=0B.4x+y+8=0

C.3x—y+6=0D.3x+y+6=0

【答案】B

【解析】因为y=xln(2x+5),所以y=[xln(2x+5)]=ln(2x+5)+彘p所以九一=

又当x=-2时、y=xlnl=0,故切点坐标为(-2,0),所以切线方程为4x+y+8=0.

故选:B.

4.函数f(x)=;x2-lnx的单调递减区间为()

A.(-1,1)B.(0,1)C.(l,4^o)D.(0,2)

【答案】B

【解析】f(x)的定义域为(。,+8)

解不等式/。)=*_/二(X.J。+1)<0,可得Ovxvl,

XX

故函数/(x)=gx2-lnx的递减区间为(0,1).故选:B.

2

5.已知函数/(x)=f+2cosx,设力/")&=/(0.5),c=/(log052),则(

A.a>c>bB.a>b>cC.c>b>aD.c>a>b

【答案】A

【解析】/(X)=X2+2COSX,定义域为R,

f(-X)=(-X)2+2cos(-x)=x2+2cosx=/(x),所以/(x)是偶函数,

f'(x)=2x-2sinx,令g(x)=2x-2sinx,则g'(x)=2-2cos尤20,

所以在R上/'(x)单调递增,/(0)=0,

即在(0,物)上/'(x)>0,/(x)单调递增,

因为c=/(log052)=/(-I)=/(1),20-5>1>0,52,

所以/(2。5)>"1)>〃().52),即a>c>b,

故选:A

6.已知函数f(x)=;x2+cosx,/'(X)是函数f(x)的导函数,则/(X)的图像大致是()

【解析】/(x)=ix2+cosx,则/'(x)=;x-sinx,则函数/'(X)为奇函数,排除BD;

-K0,排除A;

故选:C.

7.若函数/(x)=lnx,g(x)=;x3对任意的士>々>0,不等式

恒成立,

则整数机的最小值为()

A.2B.1C.0D.-1

【答案】A

【解析】因为g(x)=;》3单调递增,占>赴>0,所以g(xJ>g(w)>0,即g区)-g(z)>0,

原不等式恒成立可化为,"g(X|)-机g(%)>XJOJ-々f。2)恒成立,

即%>%>°时,〃际(不)一%/。)>加8(X2)-尤2/。2)恒成立,

即函数人(幻=叫。)-#(力二£/一xinx在(0,+8)上为增函数,

所以“(幻=tnx2-Inx-1N0在(0,+00)上恒成立,

、lnx+1人,/、lnx+1..、21nx+1

即nnmN——,令k(x)=——,则nM/xz)=-----;-,

xxx

当0<Y<eW时,Mx)>0,心)单调递增,当x>♦时,Mx)<0,以X)单调递减,故当

时,函数&*)=皿¥的最大值为

x2

即,恒成立,由meZ知,整数〃?的最小值为2.

故选:A

8.已知函数"司=加'_三工,若有且仅有两个正整数,使得f(x)<0成立,则实数。的

取值范围是()

91

豆’旨

c「2rl.齿)

C-L5e3,3eJ

【答案】C

【解析】由/(尤)<。且x>0,得a(x+2)(工,设g(x)=三,/z(x)=«(x+2),

exe

g,(x)=生三,已知函数g(x)在(0,2)匕单调递增,在(2,+«>)匕单调递减,

e

函数/7。)=〃。+2)的图象过点(-2,0),-2^⑴7=-1,麦2⑵太二不1,若2(3太)=不9,结合

1—(—2)3e2—(—2)e3—(—2)5e

二、填空题

9.己知抛物线』=0(。>0)在x=l处的切线过点(2,1),则该抛物线的焦点坐标为

【答案】fo,1

【解析】由题意得:由*2=町可得),=上1/,求导可得>'=7上》,故切线斜率为?4

aaa

故切线方程为y-±i=v7(x-l)

aa

又因为该切线过点(2,I),所以解得。=2

抛物线方程为V=2y,焦点坐标为

故答案为:(o,;)

10.已知〃x)=(x+l)e',函数〃x)的图象在x=0处的切线方程为.

【答案】2x-y+l=O

【解析】由〃x)=(x+l)e'得/'(x)=e、+(x+l)e、,所以在x=0处的切线的斜率为

/,(O)=eo+(O+l)e°=2,

又/(())=【,故切点坐标(0,1),所以所求的切线方程为y-l=2x,即2x-y+l=0,

故答案为:2x-y+l=0.

11.若函数/(x)=H-e>有两个零点,则女的取值范围为.

【答案】(e,M)

【解析】因为/(x)=履-e”有两个零点,即丘-靖=0有两个零点=:1=;Y有两个解,即y

ke

=;与的图象有两个交点,令g(x)=?(xeR),则g'(x)=L;,

keee

所以当时,g'(x)>0,g(x)单调递增;当时,g<x)<0,g(x)单调递

减;

所以g(x)max=g6=g,又因当X<。时,g(X)=£<0,

当x>0时,g(x)=W>0,当x=0时,g(x)=±=0

要使y=:与尸三的图象有两个交点,所以即左的取值范围为(e,+«)).

故答案为:(%+°0).

2

12.关于函数/(刈=1+;-有下列4个结论:

1+e

①函数/(力的图象关于点(0,1)中心对称;②函数八“无零点;

③曲线y=/(x)的切线斜率的取值范围为④曲线y=/(x)的切线都不过点

(0,0)

其中错误结论为.

【答案】②③

7O9OP*

【解析】由已知:/(x)+f(-x)=x+-----X+----=----7+---7=2,故①正确;

1+e1+e1+e1+e

22-2

由/(0)=l>0,/(-2)=-2+-_-<-2+2=0(或/(—2)=-2+;~~=-~7<0)知函数

1+e1+er1+e

/(x)在(-2,0)内有零点,故②不正确;

2ev2

由‘")=1-环了=l-e'+er+5且e'+eTN2当且仅当x=0取等号知:尸(力的值域为

川,故③错误;

若曲线y=/(x)存在过点(0,0)的切线,设切点为(〃?,”,〃)),则由导数的几何意义与斜率公

2

式得:1__次,=_1±£L,化简得:(加+l)e〃'+l=o,令且(幻=*+1心+1,贝1]

(l+e〃'ym

g<x)=(x+2)e',当x<-2时,g'(x)<0,当/>-2时,g'(x)>0,故

ga)mm=g(-2)=l-e-2>0,所以函数g(x)无零点,因此方程无实数解,假设不成立,故④

正确.

综上,错误结论为:②③.

故答案为:②③.

-•、单选题

1.(2022•海南海口•二模)在核酸检测时,为了让标本中。M4的数量达到核酸探针能检测

到的阈值,通常采用PCR技术对。M4进行快速复制扩增数量.在此过程中,0M4的数量X,,

(单位:〃g/〃L)与PCR扩增次数”满足X“=X°xl.6",其中X。为OVA的初始数量.已

知某待测标本中DNA的初始数量为/〃L,核酸探针能检测到的DNA数量最低值为

10〃g/〃L,则应对该标本进行PCR扩增的次数至少为()(参考数据:lgl.6a0.20,

In1.6®0.47)

A.5B.10C.15D.20

【答案】B

【解析】由题意知X°=0.1,Xn=10,令10=0.1x1.6",得16=100,取以10为底的对数

2

得〃lgl.6=2,所以〃=[77=10.

1g1.6

故选:B.

2.(2022•全国•模拟预测(理))血氧饱和度是血液中被氧结合的氧合血红蛋白的容量占全

部可结合的血红蛋白容量的百分比,即血液中血氧的浓度,它是呼吸循环的重要生理参数.正

常人体的血氧饱和度一般不低于95%,在95%以下为供氧不足.当人体长时间处于高原、

高空或深海环境中,容易引发血氧饱和度降低,产生缺氧症状,此时就需要增加氧气吸入

量.在环境模拟实验室的某段时间内,可以用指数模型:S(/)=SoeK'描述血氧饱和度SQ)(单

位:%)随给氧时间f(单位:时)的变化规律,其中S。为初始血氧饱和度,K为参数.已

知'=57,给氧1小时后,血氧饱和度为76.若使得血氧饱和度达到正常值,则给氧时间

至少还需要()(结果精确到0.1,加3句.1,ln4=1.4,In5®1.6)

A.0.4小时B.0.5小时C.0.6小时D.0.7小时

【答案】D

【解析】设使得血氧饱和度达到正常值,给氧时间至少还需要好1小时,

由题意可得57砂=76,57/,=95,两边同时取自然对数并整理,

764955

得K=In——=In—=In4—In3,A"/=In—=In—=In5—In3,

573573

贝心=粤",手,则给氧时间至少还需要Q7小时

In4-ln31.4-1.1

故选:D

3.(2022・全国•模拟预测(理))已知函数

35

/(x)=c'+c>+1c>+lc>++1cy++4c:x"a,”为正奇数),r(x)是/⑴

DDKfl

的导函数,则/'(l)+/(0)=()

A.2"B.2"T

C.2"+lD.2"-'+1

【答案】D

【解析】因为/(x)=c:+c*+(ck+2c:x5++;C%*++-C>",

35kn

所以〃o)=C=i,

所以/'(x)=c:+ck+cy+.+cy-'++cyT,

则〃i)=c:+C+C++C++c:,

其中c:+c:+c:++C++C:=2"T,

所以r(l)=2"T,所以r⑴+/(O)=2"T+l;故选:D

4.(2022•江苏苏州•模拟预测)若x,ye(0,+oo),x+Inx=e''+siny,则()

A.ln(%-y)<0B.ln(y-x)>0C.x<e'D.y<lnx

【答案】C

【解析】设/(x)=x—sinx,x>0,则/'(x)=l—cosx20(不恒为零),

故〃力在(0,e)上为增函数,故〃x)>〃0)=0,

所以x>sinx,故y>siny在(0,+oo)上恒成立,

所以x+Inx<e,+y=ev+Inev,

但g(x)=x+lnx为(0,+oo)上为增函数,故x<e>'即Inxcy,

所以C成立,D错误.

取1=6,考虑1+e=e'+siny的解,

若y2e+1,则e'Ne*'>5>e+221+e-siny,矛盾,

故y<e+l即y-x<l,此时ln(y-x)<0,故B错误.

取y=l,考•虑x+lnx=e+sinl,

若x42,则x+lnx42+ln2<3<e+1<e+sinl,矛盾,

2

故x>2,此时此时ln(x-y)>0,故A错误,故选:C.

二、多选题

5.(2022•全国•模拟预测)已知函数f(x)=alnx+x,g(x)=sinx,若6(x)=.f(x)—g(x),

则下列说法正确的是()

A.当a=-l时,“X)有2个零点

B.当〃=0时,/(尤)恒在g(x)的上方

C.若Mx)在(0,也)上单调递增,则

D.若人(同在(0,2万)有2个极值点,则-gwg

【答案】BC

【解析】对于选项A,当a=—1时,〃x)=-lnx+x,则f'(x)=-/+l,当x«0,l)时,

/'(x)<0,当x«l,田)时,r(x)>0,所以〃x)在(0,1)上单调递减,在(1,+8)上单调递

增,所以/(x)的最小值为/⑴=1,即f(x)没有零点,所以A选项错误;

对于选项B,当〃=0时,/?(%)=/(x)-1g(x)=x-sinx,贝ij〃(x)=l-cosx^O,所以"(x)在

(0,+8)上单调递增,且力(力>0,BP/(x)>g(x),所以B选项正确;

对于选项C,易知"(X)=2+l-cosx(x>。),当时,因为%>0,1-8SXN0,则/zr(x)>0,

所以Mx)在(0,+8)上单调递增,符合要求;当”0时,则当xe(o,-?时,?<-2,此

时〃(力<-2+1-3%=—。+侬力40,所以/1(X)在(0,-|)上单调递减,不符合要求,所

以C选项正确;

对于选项D,当OWaW;时,/f(x)=£+l-cosxZO在(0,2兀)上恒成立,所以函数处外在

(0,2兀)单调递增,所以函数〃(外在(0,2兀)不存在极值点,

行-;4a<0时,/«x)=E+l-cosxNO在[兀,2兀)上恒成立,所以函数〃(x)在[兀,2兀)单调递

增,所以函数Mx)在[兀,2兀)不存在极值点,xw(O,可时"(x)=/+l-cosx单调递增,即函

数〃(力在(0,可至多存在个极值点,所以D选项错误.故选:BC.

6.(2022•全国•模拟预测)已知/(x)=3xlnx-(2x-l)"则()

A./(x)的定义域是g,+8)

B.若直线'=相和/(x)的图像有交点,则机w1-8,一|ln2

।7/b

Cr.In—<-------1

63

D.ln|>-(2>/2-l)

【答案】AC

x>01/、1

【解析】A:c,、八=xNq,所以f(X)的定义域为厂,+8),故A正确:

lx—12U22

B::(x)=3(lnx+l_j2xT),设g(x)=lInx+1_,2x-1,

,nil11_>/2x-1—x

贝以(力—

有g'(x)40在上恒成立,故g(x)在七,+8)上单调递减,

且g(l)=0,所以当xeg,l)时/'(x)>0,当xe(l,+8)时/'(x)<0,

则人幻在七1)上单调递增,在(1,«»)上单调递减,

所以〃X)M=/(1)=T,若直线丫="与f(x)的图像有交点,则加4—1,故B错误;

C:由B中的分析,g(£|<g(l),代入得]「<型一1,故C正确;

D:由B中的分析,代入得夜一1,故D错误.

故选:AC

三、填空题

7.(2022・山东・烟台二中模拟预测)请写出一个定义在R上的函数,其图象关于y轴对称,

无最小值,且最大值为2.其解析式可以为/")=.

【答案】一一+2或(一/+2,~W+2等)(答案不唯一)

【解析】根据题中的条件可知函数是偶函数,最大值为2,所以/(工)=-/+2满足题中的条

件,再如〃力=-/+2,再如〃x)=TM+2等等(答案不唯一).

故答案为:-/+2或(--+2,-W+2等)(答案不唯一).

8.(2022•河北邯郸•二模)已知点P为曲线y=?上的动点,O为坐标原点.当最小

时,直线。尸恰好与曲线y=Hnx相切,则实数“=_.

【答案】-e

【解析】设P(x,Jnx),所以[0P|=Jd+(1)2.(lnx)2,

设g(x)=f+(:L,g,(x)=2x+(%2(lnx)」=士配,

exx

i722

当x>—时,Inx>—1—Inx>--,2x2>—,所以g'(x)>(),g(x)单调递增,

eee~e~

I222

当0<xv一时Inx<—1=>——Inx<——,2x~<—y,

efe~e-e~

所以g'*)vO,g(x)单调递减,

当》=,时,函数g(x)有最小值,即|。"有最小值,所以「上,-3,

eee

此时直线OP的方程为y=-X,设直线y=-X与曲线y=alnx相切丁点(Xo,alnx。),

,,aa,

由y==-=—=T=Xo=-a,显然(为,。1%)在直线y=—x上,

Xx()

则alnx°=-Xo,因此有“ln(-a)=ana=-e,故答案为:-e

9.己知函数八X)-3+Mnx(aeR).若函数〃x)在定义域内不是单调函数,则实数。的取

值范围是.

【答案】(°,:)

【解析】由于函数不单调,则函数在定义域内有极值点,,(")-e-I+7°,°

令函数。(幻=3・*9(*)=9,所以函数g(x)在区间(0,D上单调递增,

在区间(1•+8)上单调递减,5(0)=0,乂*>。时,Q(X)>o,g0)=之所

以aw(0,;),

10.(2022・上海•模拟预测)设函数/(x)满足/(x)=/(Wj,定义域为O=[0,"o),值域

为A,若集合{引y=f(x),xe[0,a]}可取得A中所有值,则参数〃的取值范围为.

【答案】[小,+8),

【解析】令》=—[■得,x=——^或x=—--(舍去-);

x+122

「1I%/5-1厂

当x…叵1时,77?必]故对任意工.上口,

2--------1-12

2

都存在%e[0,叵=,工=与,故/(x)=/(x。),

2x+1

故人={丫及=/*),xe[O,,而当Q,x<曰」时,77T>6-1J2,

2

故当A={),|y=/(x),*e[0,0}时•,参数。的最小值为避二1,

2

故参数。的取值范围为[号,+8),故答案为:[与1,+8).

四、解答题

11.(2022.全国,模拟预测(理))对于区间上",〃],卜7?,〃),(m,n),其中">加,

统一将"一机称为这四类区间的长度.已知函数f(x)=e'+x2-5(e为自然对数的底数).

⑴当a=e+2时,求/(x)在区间[L2]上的值域的区间长度;

⑵若“X)在区间[L2]上单调递增,那么xe[0,3]时,〃x)值域的区间的长度是否存在最小

值?若存在,求出最小值;若不存在,请说明理由.

【答案】⑴(e-1)?;(2)存在,最小值为e?-3e+4

【解析】(1)当"=«+2时,函数/(力=6,+_?-(e+2)x,xe[l,2],

r(x)=e*+2x-(e+2),

•・"'(x)是增函数,

•••r(x)"(i)=o,

.•./(x)=e2+f—(e+2)x在区间[1,2]是增函数,

函数y(x)在区间[1,2]上的值域为卜(1),/(2)]=[-1看-2e],

二值域区间的长度为e2-2e+l=(e-l)2.

⑵V函数“X)在区间[L2]上单调递增,.•.在区间[1,2]上((x)N0,即e+2x-a>0,

,aWe+2.

①若a41,则/'(0)=1-a0,且f'(x)递增.

在区间[0,3]上r(x)W0,从而在[0,3]上递增,.•.函数的值域为[/(0),”3)],

n-m=/(3)-/(0)=(e3+9-3a)-l=e3+8-3a,

"•a<\,m=e3+8-3a2e、+5.

②若a=e+2,则/”)=e+2-a=0,且/'(x)递增.

...在区间[0,1]上/'(x)40;在区间[1,3]上/'(%)>0,

在区间[0』上递减,在区间[L3]上递增,

»j=/(l)=e+l-a=-l,7z=max^/(0),/(3)}=1l,e3-3-3ej=e3-3-3e,

•*'n—m=e3—3e+4-

③若lvove+2,则r(0)=l—a<0,r(l)=e+2—〃>0,且/'(x)递增.

・・・在区间(0,1)内存在x=r,使得r(r)=e'+2/—。=0,

当无目。可上,r(x)<o,在区间3]上,r(x)>o,

・・・〃力在区间[0,4上递减,在区间1,3]上递增

m=/(r)=e/+t2-at,n=max|/(0),/(3)|=^l,e3+9-3^|,

V1<^<e+2,/.7?=max{/(0),/(3)}=1l,e3+9-3tz|=e3+9-3tz,

/.n-m=/(3)-/(/)=(e3+9-3々)-便+Z2-at^=-er-t2+at-3a+e3+9,

)•隐零点/满足:e,+2r-a=0,;・消。可得:

n-m=Y-/2+tzr-36z+e3+9=(r-4)ez+r2-6r4-e3+9,

,不妨记力。)=。-4)e'+/-6E+63+9,re(0,1),

・・・〃(。=(/-3)3+2-6=«—3乂^+2)<0,

/z(r)=(r-4)e/+t2-6r+e3+9,/«0,l)递减,.・.〃(/)£(〃(1),〃(0))=13-3©+4看+5),

・二〃(%)>熊一3e+4,n-m>e3-3e+4.

综上,当。(1时,n-/w>e34-5;

当。=e+2时,"一〃2=e,—3e+4;

当lva<e+2时,/I—/n>e3-3e4-4»

e3+5>e3-3e+4,

:.当a=e+2时,〃一“取得最小值斯-3匕+4,

,函数/(力在x«0,3]的值域区间的长度的最小值为e'-3e+4.

12.(2022・上海•华师大二附中模拟预测)已知定义域为。的函数y=/(x).当〃时,若

g(x)J3-/⑷(xe。,X^a)是增函数,则称〃x)是一个“7(a)函数”.

X—C1

(1)判断函数y=2/+x+2(xeR)是否为7⑴函数,并说明理由;

(2)若定义域为[0,+8)的7(0)函数y=s(x)满足s(0)=0,解关于2的不等式s(22)<2s⑵;

(3)设P是满足下列条件的定义域为R的函数y=w(x)组成的集合:①对任意〃eR,W(x)都

是T®函数;②W(0)=W⑵=2,W(-1)=W(3)=3.若W(x)2,"对一切W(x)eP和所有xeR成

立,求实数加的最大值.

【答案】⑴是,理由见解析(2)(0,1)(3)加=1

【解析】⑴是,理由:由题,g(x)=(2x、x+2H2x『+l+2)=2x+3(xeR,.1)为增

v'x-1

函数,

故y=2d+x+2(xeR)是T⑴函数.

(2)因为y=s(x)是7(0)函数,且s(0)=0,所以g(x)=斗是[0,+8)上的增函数,

因为s(24)有意义,所以420,显然,2=0时不等式不成立,下设2>0,

此时5(22)<汨(2)等价于史&〈型,

222

由g(x)的单调性得,22<2,即所求不等式的解集为(0,1).

⑶由题意,W(x)是7(。)函数,故),=也?二是增函数,从而当x<0时,

卬(X)-2<W(2)-2=O,即W(X)>2;而W(x)是T(2)函数,故丫=丝处2是增函数,从而

当x>2时,卬(力-2>四2k2=0,即w(x)>2,

x-20-2

当0<x<2时,同理可得,卬(I-2>W上上且可生2VW(3)匚=[,故卬")>2-"且

x-1X-23-2

W(x)>x9W(x)>max{x,2-x)=l+|x-l|>l.

因此,当机£1时,对一切xcR成立.

下证,任意机>1均不满足要求,由条件②知,m<2.

另一方面,对任意“e(l,2],定义函数%(力=午卜-『+"竺|xT|+写,容易验证条

件②成立.

对条件①,任取〃eR,有%("-%(叽S(x+“_2)+7-3MWTH“T,

x-u44x-u

注意至i」y=x+“-2是增函数,

而对当"<1时,/?(x)=L2-2u,;当M2时,

X-U1----------,%>1

、X-u

,2«-2।

-1----------X<]

〃(x)=,x-u',均单调不减.

nn.M-l7-3M八

因为丁,^—>0,

所以条件①成立.从而小(x)eP.此时,%⑴=等<M,

故机<M,从而m=1为所求最大值.

真题练

一、选择题

1.(2021年高考全国乙卷理科)设a00,若x=a为函数/(x)=a(x—a)2(x—。)的极大

值点,贝I")

Aa<bB.a>bC.ah<a~^>-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论