版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第24讲特殊四边形-菱形目录TOC\o"1-3"\n\h\z\u一、考情分析二、知识建构考点一菱形的性质与判定题型01利用菱形的性质求角度题型02利用菱形的性质求线段长题型03利用菱形的性质求周长题型04利用矩形的性质求面积题型05利用矩形的性质求坐标题型06利用矩形的性质证明题型07添加一个条件证明四边形是菱形题型08证明四边形是菱形题型09根据菱形的性质与判定求角度题型10根据菱形的性质与判定求线段长题型11根据菱形的性质与判定求面积题型12根据菱形的性质与判定解决多结论问题题型13与菱形有关的新定义问题题型14与菱形有关的规律探究问题题型15与菱形有关的动点问题题型16菱形与一次函数综合题型17菱形与反比例函数综合题型18菱形与一次函数、反比例函数综合题型19菱形与二次函数综合考点要求新课标要求命题预测菱形的性质与判定探索并证明菱形的性质定理.探索并证明菱形的判定定理.菱形是特殊平行四边形中比较重要的图形,也是几何图形中难度比较大的几个图形之一,年年都会考查,预计2024年各地中考还将出现.菱形的考察类型比较多样,其中选择、填空题常考察菱形的基本性质,解答题中考查菱形的性质和判定,一般和三角形全等、解直角三角形、二次函数、动态问题综合应用的可能性比较大.考点一菱形的性质与判定菱形的定义:有一组邻边相等的平行四边形叫做菱形.菱形的性质:1)具有平行四边形的所有性质;2)四条边都相等;3)两条对角线互相垂直,且每条对角线平分一组对角.4)菱形既是中心对称图形,又是轴对称图形,菱形的对称中心是菱形对角线的交点,菱形的对称轴是菱形对角线所在的直线,菱形的对称轴过菱形的对称中心.菱形的判定:1)A对角线互相垂直的平行四边形是菱形.A2)一组邻边相等的平行四边形是菱形.3)四条边相等的四边形是菱形.【解题思路】判定一个四边形是菱形时,可先说明它是平行四边形,再说明它的一组邻边相等或它的对角线互相垂直,也可直接说明它的四条边都相等或它的对角线互相垂直平分.菱形的面积公式:S=ah=对角线乘积的一半(其中a为边长,h为高).菱形的周长公式:周长l=4a(其中a为边长).1.对于1.对于菱形的定义要注意两点:a.是平行四边形;b.一组邻边相等.2.定义说有一组邻边相等的平行四边形才是菱形,不要错误地理解为有一组邻边相等的四边形是菱形.3.菱形的面积S=对角线乘积的一半,适用于对角线互相垂直的任意四边形的面积的计算.4.在求菱形面积时,要根据图形特点及已知条体灵活选择面积公式来解决问题,5.在利用对角线长求菱形的面积时,要特别注意不要漏掉计算公式中的12题型01利用菱形的性质求角度【例1】(2022·河北石家庄·校考模拟预测)如图,菱形ABCD中,∠1=15°,则∠D=(
A.115° B.150° C.125° D.130°【变式1-1】(2023·陕西西安·一模)如图,将菱形纸片沿着线段AB剪成两个全等的图形,则∠1的度数是(
)A.40° B.60° C.80° D.100°【变式1-2】(2023·浙江嘉兴·统考二模)如图,菱形ABCD中,以点A为圆心,以AB长为半径画弧,分别交BC,CD于点E,F.若∠EAF=60°,则
【变式1-3】(2020·吉林长春·统考二模)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=124°,则∠OED=度.【变式1-4】(2023·湖南永州·统考一模)如图,菱形ABCD中,∠CBD=75,分别以A、B为圆心,大于AB的一半长为半径画弧,两弧在AB的两侧分别交于点P、Q,作直线PQ交AB于点E,交AD于点F,连接BF,求题型02利用菱形的性质求线段长【例2】(2022·安徽·合肥38中校考模拟预测)如图在菱形ABCD中,AD=12,对角线AC和BD交于点O,点E,F分别是OD和OC的中点,AE与BF交于点G,则EF的长为.
【变式2-1】(2023·浙江·模拟预测)已知菱形的一个内角为60°,一条对角线的长为43,则另一条对角线的长为【变式2-2】(2022·湖南长沙·校考二模)如图,四边形ABCD是边长为5的菱形,对角线AC,BD的长度分别是一元二次方程x2-2m+1x+8m
【变式2-3】(2022·黑龙江哈尔滨·哈尔滨市萧红中学校考模拟预测)如图,在菱形ABCD中,AC、BD交于点O,点E在线段OD上,连接CE,若BE=CD=2DE,
【变式2-4】(2023·山西吕梁·校联考模拟预测)如图,在菱形ABCD中,对角线AC=2,BD=1,AC,BD相交于点O,过点C作CE⊥AB交AB的延长线于点E,过点O作OF⊥CE交CE于点F
题型03利用菱形的性质求周长【例3】(2023·河北沧州·校考模拟预测)矩形ABCD的对角线AC、BD相交于O,CE∥BD,DE∥AC,若AB=6,AD=8,则四边形
A.10 B.20 C.28 D.30【变式3-1】(2023·广东汕头·统考一模)如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A的坐标为0,3,∠D=60°,则菱形ABCD的周长为(
A.13 B.14 C.15 D.8【变式3-2】(2023·河南商丘·统考一模)如图,菱形ABCD中,点E,F,G分别为AB,AD,CD的中点,EF=4,FG=3,则菱形ABCD的周长为(A.12 B.16 C.18 D.20【变式3-3】(2023·湖南永州·校考二模)如图,在菱形ABCD中,M、N分别为AB、AC的中点,若MN=3
【变式3-4】(2023·湖南长沙·长沙市南雅中学统考一模)如图,在菱形ABCD中,对角线AC、BD交于点O,点E,F分别为边AB,
(1)求证:AC⊥(2)若EF=6,tan∠AEF题型04利用矩形的性质求面积【例4】(2022·黑龙江哈尔滨·统考一模)一个菱形的周长是20,两条对角线的比是4:3,则这个菱形的面积是(
)A.12 B.96 C.48 D.24【变式4-1】(2023·青海海东·统考三模)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为(
)A.72 B.48 C.24 D.9【变式4-2】(2023·福建泉州·统考模拟预测)已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16【变式4-3】(2022·福建龙岩·校考模拟预测)如图,菱形ABCD中,∠CBA=60°,其中一条对角线AC=6cm
题型05利用矩形的性质求坐标【例5】(2022·陕西西安·校考模拟预测)如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD∥x轴且AD=4,∠A=60°,将菱形ABCD绕点O顺时针旋转,使点D落在x轴正半轴上,则旋转后点
A.0,23 B.2,-4【变式5-1】(2023·天津河西·天津市新华中学校考一模)如图,四边形ABCD是菱形,点D在x轴上,顶点A,B的坐标分别是(0,2),(4,4),则点
A.(4,2) B.(6,2) C.(6,4) D【变式5-2】(2023·河南周口·淮阳第一高级中学校考三模)如图,在平面直角坐标系xOy中,已知菱形ABCD的顶点A-3,3,C1,-1,对角线BD交AC于点M,交x轴于点N,若BN=2ND
A.32,72 B.2,22 C.(4,2【变式5-3】(2023·河南南阳·统考三模)菱形OABC在平面直角坐标系中的位置如图所示,已知顶点A8,0,点D是OA的中点,点P是对角线OB上的一个动点,∠AOC=60°,当PAA.6,23 B.6,433 C.【变式5-4】(2023·天津红桥·统考三模)如图,四边形ABCD为菱形,点A-3,0,点D0,4,点B在x
A.5,4 B.4,5 C.4,3 D.3,4【变式5-5】(2023·陕西咸阳·统考一模)如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为4,0,点B、C在第一象限,∠AOC=60°,求点
题型06利用矩形的性质证明【例6】(2023·新疆乌鲁木齐·统考模拟预测)如图,在菱形ABCD中,E,F是对角线AC上的两点,且AE(1)求证:△ADE(2)证明四边形BEDF是菱形.【变式6-1】(2023·山西·山西实验中学校考模拟预测)如图,在菱形ABCD中,AC是对角线,点E是线段AC延长线上的一点,在线段CA的延长线上截取AF=CE,连接DF,BF,DE,BE.试判断四边形【变式6-2】(2024上·黑龙江哈尔滨·九年级统考期末)【操作探究】已知:在菱形ABCD中,点M在直线BD上,过M作AC的平行线交直线AD于点E,交直线AB于点F.(1)【举例感知】如图1,当点M在线段BD上时,求证:AC=(2)【类比探究】①当点M在DB延长线上时,直接写出AC、②当点M在BD延长线上时,直接写出AC、【变式6-3】(2020·北京·统考中考真题)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.
【变式6-4】(2022·湖北宜昌·统考中考真题)已知菱形ABCD中,E是边AB的中点,F是边AD上一点.(1)如图1,连接CE,CF.CE⊥AB,①求证:CE=②若AE=2,求CE(2)如图2,连接CE,EF.若AE=3,EF=2AF题型07添加一个条件证明四边形是菱形【例7】(2022·湖北襄阳·统考中考真题)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是(
)
A.若OB=OD,则▱ABCD是菱形 B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形 D.若AC⊥BD,则▱ABCD是菱形【变式7-1】(2019·宁夏·统考中考真题)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC⊥BD B.AB=AD C.【变式7-2】(2021·北京·统考中考真题)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=【变式7-3】(2022·黑龙江齐齐哈尔·统考中考真题)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是题型08证明四边形是菱形【例8】(2022·江苏连云港·统考中考真题)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM【变式8-1】(2022·浙江嘉兴·统考中考真题)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.
若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【变式8-2】(2023·云南·统考中考真题)如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且
(1)求证:四边形AECF是菱形;(2)若∠ABC=60°,△ABE的面积等于43,求平行线【变式8-3】(2022·山东青岛·统考中考真题)如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知__________(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件2:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)题型09根据菱形的性质与判定求角度【例9】(2020·河北唐山·统考一模)如图,①以点A为圆心2cm长为半径画弧分别交∠MAN的两边AM、AN于点B、D;②以点B为圆心,AD长为半径画弧,再以点D为圆心,AB长为半径画弧,两弧交于点C;③分别连接BC、CD、AC,若∠MAN=60°,则∠【变式9-1】(2023·四川成都·统考一模)如图,在△ABC中,AB=AC,分别以C、B为圆心,取AB的长为半径作弧,两弧交于点D.连接BD、AD.若∠ABD【变式9-2】(2022·宁夏中卫·统考一模)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数是.【变式9-3】(2022·浙江金华·统考一模)如图,雨伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC.当伞收紧时,点D与点M重合,且点A,E(F),D在同一条直线上.已知伞骨的部分长度如下(单位:cm):DE=DF=AE=AF=40.(1)求AM的长.(2)当伞撑开时,量得∠BAC=110°,求AD的长.(结果精确到1cm)参考数据:sin55°≈0.8192,题型10根据菱形的性质与判定求线段长【例10】(2023·湖北荆州·统考模拟预测)在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为(
A.4 B.6 C.8 D.10【变式10-1】(2023·海南省直辖县级单位·校考三模)如图,在矩形ABCD中,过AC的中点O作EF⊥AC,交BC于E,交AD于F,连接AE、CF.若AB=3,∠DCF
A.2 B.5 C.3 D.2【变式10-2】(2023·青海海东·统考三模)如图所示,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,P为BC边上的任意一点,连接PA,以PA、PC为邻边作▱PAQC
【变式10-3】(2023·吉林长春·统考二模)如图,小李将一张边长分别为4和10的矩形纸片对折、再对折,然后沿图中的虚线AC剪下,将纸展开,就得到一个四边形.若∠ACB=60°,则这个四边形的周长为题型11根据菱形的性质与判定求面积【例11】(2023·云南·模拟预测)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40,求AC的长.【变式11-1】(2022·贵州贵阳·统考模拟预测)折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB=8,AD=4,则MN的长是(
)A.535 B.25 C.735【变式11-2】(2019·山东德州·校联考二模)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.【变式11-3】(2022·吉林长春·校考模拟预测)如图,矩形ABCD的对角线AC、BD相交于点O,BE//AC,(1)求证:四边形AOBE是菱形;(2)若∠AOB=60°,AC=4【变式11-4】(2022·江苏南京·统考一模)如图,在菱形ABCD中,E、F分别是BC、DC的中点.(1)求证∠AEF(2)若菱形ABCD的面积为8,则△AEF的面积为______题型12根据菱形的性质与判定解决多结论问题【例12】(2023·内蒙古·一模)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于12AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是(
)A.4 B.3 C.2 D.1【变式12-1】(2023·广东深圳·校考模拟预测)如图,四边形ABCD为菱形,BF∥AC,DF交AC的延长线于点E,交BF于点F,且CE:AC=1:2.则下列结论:①△ABE≌△ADE;②A.①③ B.①②④ C.②③④ D.①②③④【变式12-2】(2022·湖南长沙·长沙市长郡双语实验中学校考模拟预测)如图,直线CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:FC=1:2;其中正确的结论有.(填写所有正确结论的序号)【变式12-3】(2023·福建宁德·校考模拟预测)如图,在一张矩形纸片ABCD中,AB=4,点M,N分别在AD,将矩形纸片ABCD沿直线MN折叠,使得点C落在AD上的一点E①连接CM,四边形ENCM一定是菱形;②F,M,C三点一定在同一直线上;③当点E与A重合时,A,B,C,D,F五点在同一个圆上;④点E到边MN,BN的距离可能相等.其中正确的是.(写出所有正确结论的序号)题型13与菱形有关的新定义问题【例13】(2020·河北唐山·统考模拟预测)定义:如图,若菱形AECF与正方形ABCD两个顶点A,C重合,另外两个顶点E,F在正方形ABCD的内部,则称菱形AECF为正方形ABCD的内含菱形.若正方形的周长为16,其内含菱形边长是整数,则内含菱形的周长为;若正方形的面积为18,其内含菱形的面积为6,则内含菱形的边长为.【变式13-1】(2023·江苏盐城·统考一模)定义:若四边形中某个顶点与其它三个顶点距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.
(1)判断:一个内角为60°的菱形________等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形以A为等距点的“等距四边形”,画出相应的“等距四边形”(互不全等),并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为________.(3)如图,在海上A,B两处执行任务的两艘巡逻艇,根据接到指令A,B两艇同时出发,A艇直接回到驻地O,B艇到C岛执行某项任务后回到驻地O(在C岛执行任务的时间忽略不计),已知A,B,C三点到O点的距离相等,AO∥BC,BC=100km,tanA=32,若【变式13-2】(2022·辽宁沈阳·东北育才双语学校校考三模)【定义】在平面直角坐标系xOy中,如果点A,C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“阳光菱形”,如图是点A,C的“阳光菱形
【运用】已知点M的坐标为2,2,点P的坐标为(1)下列各组点,能与点M,P形成“阳光菱形”的是______.(直接填写序号)①E-4,10,F10,-4;②G1,6,(2)如果四边形MNPQ是点M,P的“阳光菱形”,点N在MP下方,且面积为16.①求点N、点Q的坐标;②如果直线y=kx-3k【变式13-3】(2022·江西萍乡·校考模拟预测)若四边形对角线互相垂直,那么我们定义这种四边形为“对垂”四边形.特征辨析(1)下列4个图中,四边形ABCD不是“对垂”四边形的是()归纳探究(2)如图1,ED⊥AF于O,动点P,Q都从O点出发,点P沿OE运动到B,点Q沿OF运动到①当∠BAC=30°,OB=OC,OD=1,OA=4时,则AB2+CD2=___________,AD2+②在“对垂”四边形ABCD中,当①中的条件都不存在时,①中所猜想的数量关系还成立吗?若成立,请予以证明;若不成立,请说明理由.拓展应用(3)如图2,四边形AEDB和四边形AGFC均为正方形,点B恰好在FC的延长线上,且已知AC=2,AB=题型14与菱形有关的规律探究问题【例14】(2023·广东深圳·校考一模)如图,菱形OABC的顶点O(0,0),A(-2,0),∠B=60°,若菱形OABC绕点O顺时针旋转90°后得到菱形OA1B1C1,依此方式,绕点O连续旋转
A.3,1 B.1,-3 C.-3【变式14-1】(2023·河南南阳·统考模拟预测)如图,正方形ABCD的顶点均在坐标轴上,且点B的坐标为2,0,以AB为边构造菱形ABEF,将菱形ABEF与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点F的对应点F2023的坐标为(
A.-2,22 B.22,-2 C.【变式14-2】(2023·湖南永州·统考二模)如图,已知矩形ABCD的边长分别为6,4,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C
A.32n-4 B.32n【变式14-3】(2023·贵州铜仁·校考一模)如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C
【变式14-4】(2020·甘肃兰州·兰州市外国语学校校考二模)如图,在菱形ABCD中,边长为1,∠A=60˚,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去,…,则四边形A2019B2019C2019D2019的面积是.【变式14-5】(2019·甘肃白银·校联考一模)如图,作出边长为1的菱形ABCD,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形ACC2D2,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为.题型15与菱形有关的动点问题【例15】(2023·广东东莞·统考一模)如图菱形ABCD的边长为4cm,,∠A=60°,动点P,Q同时从点A出发,都以1cm/s的速度分别沿A→B→C和A→D→C的路经向点C运动,设运动时间为x(单位:s),四边形PBDQA.B.C.D.【变式15-1】(2017·山东潍坊·统考一模)菱形OBCD在平面直角坐标系中的位置如图所示,顶点B2,0,∠DOB=60°,点E坐标为0,-3,点P是对角线OC
【变式15-2】(2023·湖北省直辖县级单位·模拟预测)用四根一样长的木棍搭成菱形ABCD,P是线段DC上的动点(点P不与点D和点C重合),在射线BP上取一点M,连接DM,CM,使∠CDM操作探究一
(1)如图1,调整菱形ABCD,使∠A=90°,当点M在菱形ABCD外时,在射线BP上取一点N,使BN=DM,连接CN,则∠操作探究二(2)如图2,调整菱形ABCD,使∠A=120°,当点M在菱形ABCD外时,在射线BP上取一点N,使BN=DM,连接CN,探索拓展迁移(3)在菱形ABCD中,∠A=120°,AB=6.若点P在直线CD上,点M在射线BP上,且当∠【变式15-3】(2023·江苏盐城·景山中学校考模拟预测)如图,BD是菱形ABCD的对角线,AB=BD=2cm.动点P从点A出发,沿折线AB-BC以1cm/s的速度向终点C运动,当点P出发后,且不与点B重合时,过点P作PQ∥BD交折线AD-DC于点Q.以PQ为边作正三角形PQE,且点E与BD始终在PQ
(1)当点E落在BD上时,求t的值;(2)当点P在AB边上时,求S与t之间的函数关系式;(3)当点E落在∠BDC的平分线上时,直接写出t【变式15-4】(2023·广东梅州·统考一模)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm.动点P从点A出发,以2cm/s的速度沿边AB向终点B匀速运动.以PA为一边作∠APQ=120°,另一边PQ与折线AC-CB相交于点Q,以PQ为边作菱形PQMN,点N在线段
(1)当点Q在边AC上时,PQ的长为cm.(用含x的代数式表示)(2)当点M落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.题型16菱形与一次函数综合【例16】(2022·江苏常州·统考二模)如图,在平面直角坐标系xOy中,一次函数y=-43x+4的图像与x轴、y轴分别交于点A、B,以AB为边作菱形ABCD,BC∥【变式16-1】(2018·江苏无锡·统考一模)已知一次函数y=﹣3x+3的图象与x轴、y轴分别交于A、B两点.直线l过点A且垂直于x轴.两动点D、E分别从AB两点间时出发向O点运动(运动到O点停止).运动速度分别是每秒1个单位长度和3个单位长度.点G、E关于直线l对称,GE交AB于点F.设D、E的运动时间为t(s).(1)当t为何值时,四边形是菱形?判断此时△AFG与AGB是否相似,并说明理由;(2)当△ADF是直角三角形时,求△BEF与△BFG的面积之比.题型17菱形与反比例函数综合【例17】(2023·吉林长春·吉林大学附属中学校考模拟预测)如图,在平面直角坐标系中,菱形ABCO的顶点O为坐标原点,边CO在x轴正半轴上,∠AOC=60°,反比例函数y=3xx>0的图象经过点A,且交菱形对角线BO于点D,DE⊥
A.1 B.3 C.2-3 D.【变式17-1】(2023·浙江嘉兴·统考二模)如图,平面直角坐标系中,菱形ABCD的顶点A,C在反比例函数y=kx(k<0)的图象上,对角线AC与
A.-4 B.4 C.-9 D【变式17-2】(2023·广东湛江·校考一模)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=43,反比例函数y=kx的图象经过点C,与AB交于点D,若
【变式17-3】(2023·湖北省直辖县级单位·校联考二模)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,S△ABC=3,且CA
(1)求该反比例函数的解析式;(2)若点N是反比例函数图像上一点,当四边形ABCN是菱形时,求出点N坐标.【变式17-4】(2023·河南周口·统考二模)如图,在平面直角坐标系中,点A的坐标为6,8,连接OA,过点A作x轴的垂线,垂足为B,∠AOB的平分线与线段AB交于点P
(1)若反比例函数y=kx(2)如图,过点A作x轴的平行线,交射线OP于点Q,过点Q作OA的平行线,交x轴于点R.求证:四边形OAQR是菱形.【变式17-5】(2023·河南商丘·统考三模)如图,菱形OBAC顶点A在反比例函数y=kx(x>0)的图象上,点B在y
(1)求k的值;(2)点P为反比例函数图象上一个动点,过点P作PN⊥x轴于点N,交OA于点M,若PM=题型18菱形与一次函数、反比例函数综合【例18】(2023·江苏连云港·统考二模)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图像与反比例函数y=mxm>0的图像相交于
(1)求m和n的值;(2)若点Pe,f在该反比例函数的图像上,且它到y轴的距离小于3,则f(3)以AC为边在右侧作菱形ACDE.使点D在x轴正半轴上,点E在第一象限,双曲线交DE于点F,连接AF,CF,则△ACF【变式18-1】(2023·浙江金华·统考一模)如图,已知反比例函数y1=kx与一次函数y2=x(1)求n和k的值.(2)根据图象,当y1≥y(3)如图,以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标.【变式18-2】(2023·安徽合肥·统考模拟预测)如图,已知一次函数y1=32x-3的图象与反比例函数y(1)求n和k的值;(2)如图,以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,双曲线交C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课文故乡课件
- 公务员的辞职报告汇编15篇
- 比的基本性质课件
- 综治宣传月活动总结-(15篇)
- 大学生转专业申请书七篇
- 学校感恩节活动策划15篇
- 参观烈士陵园作文范文
- 书店营销策划方案大全
- 企业会计年终工作总结模板
- 读《幻城》有感合集15篇
- 第三课 民族问题的内涵与产生根源 (1)课件
- 干部调动审批呈报表
- 初中科学《九年级第四章集体备课》基于“大概念”理念的单元设计计划课件
- 经支气管镜冷冻治疗术
- 中国标准文献分类法二级目录
- 《家务劳动我能行》综合实践课课件
- 2023版高中英语新课标知识考试题库(附答案)
- 臀位助产分娩术课件
- GB/T 5338.1-2023系列1集装箱技术要求和试验方法第1部分:通用集装箱
- 2电流速断保护
- 中耳解剖、生理与疾病 助听器验配课件
评论
0/150
提交评论