天津市宝坻区2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
天津市宝坻区2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
天津市宝坻区2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
天津市宝坻区2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
天津市宝坻区2024年八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市宝坻区2024年八年级数学第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列根式中是最简根式的是()A.

B.

C.

D.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm24.下列运算结果正确的是()A. B. C. D.5.不等式的解集是()A. B. C. D.6.如图,在矩形ABCD中,AD=+8,点E在边AD上,连BE,BD平分∠EBC,则线段AE的长是()A.2 B.3 C.4 D.57.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.48.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm9.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均数都是85分,方差分别是:S甲2=3.8,S乙2=2.7,S丙2=6.2,S丁2=5.1,则四个人中成绩最稳定的是()A.j甲 B.乙 C.丙 D.丁10.若关于x的分式方程无解,则a的值为()A. B.2 C.或2 D.或﹣211.如图,在△ABC中,D、E分别是AB、AC的中点,BC=16,F是线段DE上一点,连接AF、CF,DE=4DF,若∠AFC=90°,则AC的长度是()A.6 B.8 C.10 D.1212.已知一元二次方程2x2﹣5x+1=0的两根为x1,x2,下列结论正确的是()A.两根之和等于﹣,两根之积等于1B.x1,x2都是有理数C.x1,x2为一正一负根D.x1,x2都是正数二、填空题(每题4分,共24分)13.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.14.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.15.如图,在中,对角线与相交于点,是边的中点,连结.若,,则的度数为_______.16.函数yl="x"(x≥0),(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3)②当x>3时,③当x=1时,BC=8④当x逐渐增大时,yl随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是_.17.如图,在矩形中,,,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把沿EF折叠,点B落在点处.若,当是以为腰的等腰三角形时,线段的长为__________.18.计算:_______.三、解答题(共78分)19.(8分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且,连接AE、AF、EF(1)求证:(2)若,,求的面积.20.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形21.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表训练后学生成绩统计表成绩/分数6分7分8分9分10分人数/人1385n根据以上信息回答下列问题(1)训练后学生成绩统计表中n=,并补充完成下表:平均分中位数众数训练前7.58训练后8(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?22.(10分)某移动通信公司推出了如下两种移动电话计费方式,月使用费/元主叫限定时间/分钟主叫超时费(元/分钟)方式一306000.20方式二506000.25说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;月主叫时间500分钟月主叫时间800分钟方式一收费/元130方式二收费/元50(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.24.(10分)如图,中,,是上一点,于点,是的中点,于点,与交于点,若,平分,连结,.(1)求证:;(2)求证:.(3)若,判定四边形是否为菱形,并说明理由.25.(12分)解方程①2x(x-1)=x-1;②(y+1)(y+2)=226.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:A选项中,被开方数中含b2,所以它不是最简二次根式,故本选项错误;B选项中,的被开方数不能因式分解,不含开方开的尽的因式,是最简二次根式,故本选项正确;C选项中,被开方数含分母,所以它不是最简二次根式,故本选项错误;D选项中,被开方数含能开得尽方的因数,所以它不是最简二次根式,故本选项错误.故选B.2、B【解析】

根据二次根式的被开方数为非负数可列出式子,解出即可.【详解】依题意,又∵,∴故x=5,选B.【点睛】此题主要考察二次根式的定义,熟知平方数是非负数即可解答.3、D【解析】

根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.

∴矩形ABCD的面积是:1×5=10cm1;

当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,

∴矩形ABCD的面积是:5×3=15cm1.

故矩形的面积是:10cm1或15cm1.

故选:D.【点睛】本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.4、A【解析】

化简二次根式,进行判断即可.【详解】A.,正确;B.,此项错误;C.,此项错误D.=5,此项错误.故选A.【点睛】本题考查了二次根式运算,熟练化简二次根式是解题的关键.5、C【解析】试题分析:移项得,,两边同时除以2得,.故选C.考点:解一元一次不等式.6、B【解析】

根据二次根式的性质得到AB,AD的长,再根据BD平分∠EBC与矩形的性质得到∠EBD=∠ADB,故BE=DE,再利用勾股定理进行求解.【详解】解:∵AD=+8,∴AB=4,AD=8∵BD平分∠EBC∴∠EBD=∠DBC∵AD∥BC∴∠ADB=∠DBC∴∠EBD=∠ADB∴BE=DE在Rt△ABE中,BE2=AE2+AB2,∴(8﹣AE)2=AE2+16∴AE=3故选:B.【点睛】此题主要考查矩形的线段求解,解题的关键是熟知勾股定理的应用.7、B【解析】

试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).8、A【解析】

利用平行四边形的性质得出AO=CO,DO=BO,再利用勾股定理得出AD的长进而得出答案.【详解】∵四边形ABCD是平行四边形,∴DO=BO,AO=CO,∵∠ODA=90°,AC=10cm,BD=6cm,∴DO=3cm,AO=5cm,则AD=BC==4(cm)故选;A.【点睛】此题考查平行四边形的性质,解题关键在于利用勾股定理进行求解.9、B【解析】

根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:∵S甲2=3.8,S乙2=2.7,S丙2=6.2,S丁2=5.1,∴S乙2<S甲2<S丁2<S丙2,∴四个人中成绩最稳定的是乙,故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、D【解析】

分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【详解】解:去分母得:2x+2a+ax﹣2a=1,整理得:(a+2)x=1,由分式方程无解,得到a+2=0或x==2,解得:a=﹣2或a=﹣,故选:D.【点睛】此题考查了分式方程的解,始终注意分母不为0这个条件.11、D【解析】

由三角形中位线定理得DE=BC,再由DE=4DF,得DF=2,于是EF=6,再根据直角三角形斜边上的中线等于斜边一半的性质即得答案.【详解】解:∵D、E分别是AB、AC的中点,∴DE=BC=,∵DE=4DF,∴4DF=8,∴DF=2,∴EF=6,∵∠AFC=90°,E是AC的中点,∴AC=2EF=12.故选D.【点睛】本题考查了三角形的中位线定理和直角三角形斜边上中线的性质,熟练运用三角形的中位线定理和直角三角形斜边上中线的性质是解题的关键.12、D【解析】

根据根与系数的关系,可得答案.【详解】解:A、x1+x2=,x1•x2=,故A错误;B、x1==,x2==,故B错误;C、x1==>0,x2==>0,故C错误;D、x1==>0,x2==>0,故D正确;故选:D.【点睛】本题考查查了根与系数的关系,利用根与系数的关系是解题关键.二、填空题(每题4分,共24分)13、1.【解析】

作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=1,即NQ=1,∴MP+NP=QP+NP=QN=1,故答案为1【点睛】本题考查轴对称-最短路线问题;菱形的性质.14、x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;考点:一次函数与一元一次不等式.15、40°【解析】

直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.【详解】解:,,,对角线与相交于点,是边的中点,是的中位线,,.故答案为:.【点睛】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出是的中位线是解题关键.16、①③④【解析】逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.解:①根据题意列解方程组,解得,;∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;②当x>3时,y1在y2的上方,故y1>y2,错误;③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.因此①③④正确,②错误.故答案为①③④.本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.17、16或2【解析】

等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,

∴DC=AB=16,AD=BC=1.

分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.

∵四边形ABCD是矩形,

∴AB∥CD,∠A=90°

又GH∥AD,

∴四边形AGHD是平行四边形,又∠A=90°,

∴四边形AGHD是矩形,

∴AG=DH,∠GHD=90°,即B'H⊥CD,

又B'D=B'C,

∴DH=HC=,AG=DH=8,∵AE=3,

∴BE=EB'=AB-AE=16-3=13,

EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′=,

∴B'H=GH×GB'=1-12=6,

在Rt△B'HD中,由勾股定理得:B′D=

综上,DB'的长为16或2.故答案为:16或2【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.18、2【解析】

先把二次根式化为最简二次根式,然后将括号内的式子进行合并,最后进一步加以计算即可.【详解】原式,故答案为:2.【点睛】本题主要考查了二次根式的混合运算,熟练掌握相关运算法则是解题关键.三、解答题(共78分)19、(1)详见解析;(2)80.【解析】

(1)根据SAS证明即可;

(2)根据勾股定理求得AE=,再由旋转的性质得出,从而由面积公式得出答案.【详解】四边形ABCD是正方形,

,

而F是CB的延长线上的点,

,

在和中

,

;

(2),

,

在中,DE=4,AD=12,

,

可以由绕旋转中心

A点,按顺时针方向旋转90度得到,

,

的面积(平方单位).【点睛】本题主要考查正方形性质和全等三角形判定与性质及旋转性质,熟练掌握性质是解题关键.20、(1)作图见解析;(2)证明见解析.【解析】(1)分别以B、D为圆心,以大于的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得EO=FO,进而利用菱形的判定方法得出结论.本题解析:(1)如图所示:EF即为所求;(2)证明:如图所示:∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,∵∴△DEO≌△BFO(ASA),∴EO=FO,∴四边形DEBF是平行四边形,又∵EF⊥BD,∴四边形DEBF是菱形.21、(1)3;7.5;8.3;8;(2)估计该校九年级学生训练后比训练前达到优秀的人数增加了125人【解析】

(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;【详解】(1)n=20-1-3-8-5=3;强化训练前的中位数为=7.5;强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)500×(-)=125,所以估计该校九年级学生训练后比训练前达到优秀的人数增加了125人.【点睛】本题考查读条形统计图图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22、(1)70;100;(2)详见解析;(3)当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【解析】

(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【详解】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点睛】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23、(1)证明见解析(2)【解析】分析:(1)先根据平行四边形的性质,得出OD=OB,再根据OE=OB,得出OE=OB=OD,最后根据三角形内角和定理,求得∠OEB+∠OED=90°,即可得出结论.(2)证明△OFD为直角三角形,得出∠OFD=90°.在Rt△CED中,由勾股定理求出CD=1.由三角形面积求出EF=.在Rt△CEF中,根据勾股定理求出CF即可.详解:(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=1.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.点睛:本题考查了平行四边形的性质、三角形的内角和定理及勾股定理等知识,解题的关键是求出∠OEB+∠OED=90°,进而利用勾股定理求解.24、(1)见解析;(2)证明见解析;(3)四边形AEGF是菱形,证明见解析.【解析】

(1)依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(注:本小题也可以通过证明四边形ECGH为矩形得出结论)

(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△DPG,依据EC=PD,即可得出AD=AP+PD=AC+EC;

(3)依据∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AEGF是平行四边形,即可得到四边形AEGF是菱形.【详解】解:(1)∵AF=FG,

∴∠FAG=∠FGA,

∵AG平分∠CAB,

∴∠CAG=∠FAG,

∴∠CAG=∠FGA,

∴AC∥FG,

∵DE⊥AC,

∴FG⊥DE,

∵FG⊥BC,

∴DE∥BC,

∴AC⊥BC,

∴∠C=∠DHG=90°,∠CGE=∠GED,

∵F是AD的中点,FG∥AE,

∴H是ED的中点,

∴FG是线段ED的垂直平分线,

∴GE=GD,∠GDE=∠GED,

∴∠CGE=∠GDE,

∴△ECG≌△GHD;

(2)证明:过点G作GP⊥AB于P,

∴GC=GP,而AG=AG,

∴△CAG≌△PAG,

∴AC=AP,

由(1)可得EG=DG,

∴Rt△ECG≌Rt△DPG,

∴EC=PD,

∴AD=AP+PD=AC+EC;

(3)四边形AEGF是菱形,

证明:∵∠B=30°,

∴∠ADE=3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论