版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳东广雅学校2024年数学八年级下册期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形2.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CE B.AE=2CE C.AE=BD D.BC=2CE3.若,则下列不等式成立的是()A. B. C. D.4.下列几组数中,能作为直角三角形三边长度的是()A.6,9,10 B.5,12,17 C.4,5,6 D.1,,5.如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个 B.3个 C.4个 D.5个6.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁7.下列式子:,,,,其中分式的数量有()A.1个 B.2个 C.3个 D.4个8.式子有意义,则实数a的取值范围是()A.a≥-1 B.a≠2 C.a≥-1且a≠2 D.a>29.若把分式的x、y同时扩大3倍,则分式值()A.不变 B.扩大为原来的3倍 C.缩小为原来的 D.扩大为原来的9倍10.在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为()A.3 B.2 C.1 D.-1二、填空题(每小题3分,共24分)11.小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.12.计算:(1)=______;(2)=______;(3)=______.13.如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.14.不等式组的所有整数解的积是___________.15.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.16.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.17.如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.18.如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是_____.三、解答题(共66分)19.(10分)已知:如图,过矩形的顶点作,交的延长线于点求证:若°,求的周长.20.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△ABC;(2)请画出△ABC关于原点对称的△ABC;21.(6分)感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.
探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF
应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为22.(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,在现有网格中,以格点为顶点,分别按下列要求画三角形。(1)在图1中,画一个等腰直角三角形,使它的面积为5;(2)在图2中,画一个三角形,使它的三边长分别为3,2,;(3)在图3中,画一个三角形,使它的三边长都是有理数.23.(8分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为米/分,点M的坐标为;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.24.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.25.(10分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.26.(10分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.(1)求证:四边形AECF是平行四边形;(2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项不符合题意;B.根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项不符合题意;C.根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项不符合题意;D.根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项符合题意;故选:D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.2、B【解析】
连接BE,根据中垂线的性质可得:BE=AE,∠ABE=∠A=30°,根据直角三角形的性质可得:∠EBC=30°,CE=BE,即AE=BE=2CE.【详解】连接BE,根据中垂线的性质可得:BE=AE;∴∠ABE=∠A=30°;又∵在中,∠EBC=30°;∴CE=BE,即AE=BE=2CE.故选B.【点睛】本题主要考查了中垂线的性质和直角三角形的性质,掌握中垂线的性质和直角三角形的性质是解题的关键.3、B【解析】
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.【详解】A:a>b,则a-5>b-5,故A错误;B:a>b,-a<-b,则-2a<-2b,B选项正确.C:a>b,a+3>b+3,则>,则C选项错误.D:若0>a>b时,a2<b2,则D选项错误.故选B【点睛】本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.4、D【解析】
要求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、,故不是直角三角形,故错误;B、,故不是直角三角形,故错误;C、,故不是直角三角形,故错误;D、故是直角三角形,故正确.故选:D.【点睛】本题考查的是勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、C【解析】
分情况,BC为腰,BC为底,分别进行判断得到答案即可【详解】以BC为腰时,以B为圆心画圆将会与AB有一个交点、以C为圆心画圆同样将会与AB有两个个交点;以BC为底时,做BC的垂直平分线将会与AB有一个交点,所以BC为边作等腰三角形在AB上可找到4个点,故选C【点睛】本题主要考查等腰三角形的性质,充分理解基本性质能够分情况讨论是本题关键6、D【解析】试题分析:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.考点:方差;加权平均数.7、B【解析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:,是分式,共2个,
故选:B.【点睛】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.8、C【解析】
根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.9、B【解析】
将,扩大3倍,即将,用,代替,就可以解出此题.【详解】解:,分式值扩大3倍.故选:B.【点睛】此题考查的是对分式的性质的理解和运用,扩大或缩小倍,就将原来的数乘以或除以后代入计算是解题关键.10、C【解析】
根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.【详解】解:∵点A(2,m),∴点A关于x轴的对称点B(2,−m),∵B在直线y=−x+1上,∴−m=−2+1=−1,∴m=1,故选C.【点睛】此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.二、填空题(每小题3分,共24分)11、901【解析】
解:平均数=,方差=故答案为:90;1.12、【解析】
根据二次根式的乘法公式:和除法公式计算即可.【详解】解:(1);(2);(3).故答案为:;;.【点睛】此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.13、(0,1).【解析】试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.试题解析:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).考点:坐标与图形变化-旋转.14、1【解析】
先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.【详解】由1-2x<3,得:x>-1,
由≤2,得:x≤3,
所以不等式组的解集为:-1<x≤3,
它的整数解为1、1、2、3,
所有整数解的积是1.
故答案为1.【点睛】此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.15、65°.【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=(180°-50°)=65°,∴∠ECB=130°-65°=65°.故答案为65°.16、2或.【解析】
分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.【详解】解:E是BC的中点,BE=CE=BC=12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CE-CQ=6-2tt=6-2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CQ-CE=2t-6,t=2t-6,解得:t=6(舍),③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,则AP=4-(t-4)=8-t,EQ=2t-6,8-t=2t-6,,当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.故答案为:2或.【点睛】本题主要考查平行四边形的性质及解一元一次方程.17、【解析】
过C作CM⊥x轴于点M,由平行四边形DCOE的面积可求得OE,过D作DN⊥x轴于点N,由C点坐标则可求得ON的长,从而可求得D点坐标,代入反比例函数解析式可求得k的值【详解】如图,过C作CM⊥x轴于点M,过D作DN⊥x轴于点N,则四边形CMND为矩形,∵四边形OABC为平行四边形,∴CD∥OE,且DE∥OC,∴四边形DCOE为平行四边形,∵C(2,5),∴OM=2,CM=5,由图可得,S△AOC=S△ABC=S▱ABCO,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为10,∴S▱CDEO=S▱BCFG=10,∴S四边形DCOE=OE•CM=10,即5OE=10,解得OE=2,∴CD=MN=2,∴ON=OM+MN=2+2=4,DN=CM=5,∴D(4,5),∵反比例函数y=图象过点D,∴k=4×5=20.故答案为:20.【点睛】本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.18、60【解析】
根据平行线的性质:两直线平行内错角相等,可得∠BOD=50°,再根据对顶角相等可求出∠2.【详解】解:如图所示:∵直线a∥b,∠3=50°,∴∠BOD=50°,又∵∠1=∠BOD+∠2,∠2=∠1-∠BOD=110°-50°=60°.故本题答案为:60.【点睛】平行线的性质及对顶角相等是本题的考点,熟练掌握平行线的性质是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)【解析】
(1)根据矩形的性质可证明四边形为平行四边形,继而得出,即可证明结论;(2)根据直角三角形的性质计算得出AB、AC的值,即可得出的周长.【详解】解:证明:四边形为矩形.四边形为平行四边形由得又,,.【点睛】本题考查的知识点是矩形的性质、平行四边形的判定及性质、勾股定理、等腰三角形的性质,解此题的关键是灵活运用矩形的性质、平行四边形的性质.20、【解析】试题分析:根据平移的性质可知(-4,1),(-1,2),(-2,4),然后可画图;根据关于原点对称的性质横纵坐标均变为相反数,可得(-1,-1),(-4,-2),(-3,-4),然后可画图.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;考点:坐标平移,关于原点对称的性质21、探究:证明见详解;应用:4+【解析】
探究:根据正方形的性质得到AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.求得∠ACB=∠ACD=45°,根据全等三角形的性质得到ED=EB,∠EDC=∠EBC,求得∠EFB=∠EDC,根据等腰三角形的判定定理即可得到结论;
应用:连接DF,求得△DEF是等腰直角三角形,根据勾股定理得到CF=DF【详解】解:探究:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.
∴∠ACB=∠ACD=45°,
又∵EC=EC,
∴△EDC≌△EBC(SAS),
∴ED=EB,∠EDC=∠EBC,
∵EF⊥ED,
∴∠DEF=90°,
∴∠EFC+∠EDC=180°又∵∠EBC+∠EBF=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF;
应用:连接DF,
∵EF=DE,∠DEF=90°,
∴△DEF是等腰直角三角形,
∵DE=2,
∴EF=2,DF=22,
∵∠DCB=90°,CD=1,
∴CF=DF2-CD2=7,
∴四边形EFCD的面积=S△DEF+S△CDF=【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的识别图形是解题的关键.22、(1)详见解析;(2)详见解析;(3)详见解析;【解析】
(1)画一个边长为的直角三角形即可;(2)利用勾股定理画出三角形即可;(3)画一个三边长为3,4,5的三角形即可.【详解】(1)如图所示;(2)如图所示;(3)如图所示.【点睛】此题考查勾股定理,作图—应用与设计作图,解题关键在于掌握作图法则.23、(1)240,(6,1200);(2)y=﹣240x+2640;(3)经过4分钟或6分钟或8分钟时两人距C地的路程相等.【解析】
(1)根据函数图象得出AB两地的距离,由行程问题的数量关系由路程÷时间=速度就可以求出结论;(2)先由行程问题的数量关系求出M、N的坐标,设y与x之间的函数关系式为y=kx+b,由待定系数法就可以求出结论;(3)设甲返回A地之前,经过x分两人距C地的路程相等,可得乙的速度:1200÷20=60(米/分),分别分①当0<x≤3时②当3<x<﹣1时③当<x≤6时④当x=6时⑤当x>6时5种情况讨论可得经过多长时间两人距C地的路程相等.【详解】(1)由题意得:甲的骑行速度为:=240(米/分),240×(11﹣1)÷2=1200(米),则点M的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,解得,∴直线MN的解析式为:y=﹣240x+2640;即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200﹣1020=180,分5种情况:①当0<x≤3时,1020﹣240x=180﹣60x,x=>3,此种情况不符合题意;②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,∴1020﹣240x=60x﹣180,x=4,③当<x≤6时,甲在B、C之间,乙在A、C之间,∴240x﹣1020=60x﹣180,x=<,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60﹣180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,当甲在B、C之间时,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,此种情况不符合题意,当甲在A、C之间时,240(x﹣1)﹣1200﹣180=60x﹣180,x=8,综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.【点睛】本题考查了待定系数法一次函数的解析式的运用,一次函数与二元一次方程组的关系的运用,行程问题的数量关系的运用,注意由图像得出有用的信息及分类讨论思想在解题时的应用..24、(1)800;(2)见解析.【解析】
(1)根据两点的坐标求y1(万m3)与时间x(天)的函数关系式,并把x=20代入计算即可得;(2)分两种情况:①当0≤x≤20时,y=y1,②当20<x≤60时,y=y1+y2;并计算分段函数中y≤900时对应的x的取值.【详解】(1)设求原有蓄水量y1(万m3)与时间x(天)的函数关系式y1=kx+b,把(0,1200)和(60,0)代入到y1=kx+b得:,解得,∴y1=﹣20x+1200,当x=20时,y1=﹣20×20+1200=800;(2)设y2=kx+b,把(20,0)和(60,1000)代入到y2=kx+b中得:,解得,∴y2=25x﹣500,当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,当y≤900时,5x+700≤900,x≤1,当y1=900时,900=﹣20x+1200,x=15,∴发生严重干旱时x的范围为:15≤x≤1.【点睛】本题考查了一次函数的应用,涉及待定系数法求一次函数的解析式、分段函数等,会观察函数图象、熟练掌握待定系数法是解本题的关键.25、(1)8;(2);(3)3.【解析】
(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;
(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角形面积公式可求解;
(3)过点F作FN⊥CD的延长线于点N,设AE=x=DM,则DE=4-x=FM,NH=4-x+2=6-x,由勾股定理可求HF的长,由二次函数的性质可求HF的最小值.【详解】解:(1)∵四边形BEFH为平行四边形
∴BE=HF,BH=EF
∵四边形EFGC,四边形ABCD都是正方形
∴EF=EC,BC=CD=4=AD
∴BH=EC,且BC=CD
∴Rt△BHC≌Rt△CED(HL)
∴CH=DE
∵H为CD中点,
∴CH=2=DE
∴AE=AD-DE=2=DE,且AB=CD,∠BAD=∠ADC=90°
∴Rt△ABE≌Rt△DCE(SAS)
∴BE=EC
∴BE=EF=HF=BH=EC
∵CH=2,BC=4
∴BH===2
∴四边形BEFH的周长=BE+BH+EF+FH=8;
(2)如图2,连接DF,过点F作FM⊥AD,交AD延长线于点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024户外广告牌制作安装合同
- 2024年合作投资协议书模板
- 2024苗木购销合同范本简单版
- 2024股东合作经营合同协议书
- 城市街道广告位租赁合同
- 插画约稿合同样本
- 二房东租房合同租房合同协议范本
- 2024股份制工程合作协议书
- 货物运输合同签订技巧
- 4.1 夯实法治基础(导学案) 2024-2025学年统编版道德与法治九年级上册
- 2023年贵州黔东南州州直机关遴选公务员考试真题
- 货物质量保证措施方案
- 黑龙江省龙东地区2024-2025学年高二上学期阶段测试(二)(期中) 英语 含答案
- 4S店展厅改造装修合同
- (培训体系)2020年普通话测试培训材料
- 3-4单元测试-2024-2025学年统编版语文六年级上册
- 北师版数学八年级上册 5.8三元一次方程组课件
- 2024混合动力汽车赛道专题报告-2024-10-市场解读
- DB34T 4338-2022 行政规范性文件合法性审核规范
- 企业单位消防安全规范化管理指导手册
- 废旧物资回收投标方案(技术方案)
评论
0/150
提交评论