嘉峪关市重点中学2024年八年级数学第二学期期末学业质量监测试题含解析_第1页
嘉峪关市重点中学2024年八年级数学第二学期期末学业质量监测试题含解析_第2页
嘉峪关市重点中学2024年八年级数学第二学期期末学业质量监测试题含解析_第3页
嘉峪关市重点中学2024年八年级数学第二学期期末学业质量监测试题含解析_第4页
嘉峪关市重点中学2024年八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

嘉峪关市重点中学2024年八年级数学第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3 B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3 D.三个角满足关系∠B+∠C=∠A2.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直且相等的四边形是正方形D.角平分线上的点到角两边的距离相等3.如图,在正方形中,点在上,,垂足分别为,,则的长为()A.1.5 B.2 C.2.5 D.34.顺次连接矩形四边中点得到的四边形一定是()A.梯形 B.正方形 C.矩形 D.菱形5.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x﹣10123y51﹣1﹣11则该二次函数图象的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=6.下列各方程中,是一元二次方程的是()A. B. C. D.7.下列等式中,不成立的是A. B.C. D.8.宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为()A.1.2×10﹣7米 B.1.2×107米 C.1.2×10﹣6米 D.1.2×106米9.一次函数y=kx+b,当k<0,b<0时,它的图象大致为()A. B. C. D.10.下列算式正确的()A.=1 B.=C.=x+y D.=11.如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为()A.5 B.6 C.8 D.1212.计算的结果是()A.-3 B.3 C.6 D.9二、填空题(每题4分,共24分)13.如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是____,旋转角是____度.14.在菱形ABCD中,两条对角线AC与BD的和是1.菱形的边AB=5,则菱形ABCD的面积是_____.15.如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为_____.16.使函数有意义的的取值范围是________.17.如图,正方形的边长为5cm,是边上一点,cm.动点由点向点运动,速度为2cm/s,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.18.把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为_____.三、解答题(共78分)19.(8分)某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示.已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.运动鞋价格甲乙进价元/双)mm-30售价(元/双)300200(1)求m的值;(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(60<a<80)元出售,乙种运动鞋价格不变,那么该专卖店要获得最大利润应如何进货?20.(8分)如图,在平行四边形中,点、分别是、上的点,且,,求证:(1);(2)四边形是菱形.21.(8分)(1)--;(2)22.(10分)我县“果菜大王”王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?23.(10分)节约用水和合理开发利用水资源是每个公民应尽的责任和义务,为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水.某市规定如下用水收费标准:每户每月的用水量不超过6m3时,按a元/m3收费;超过6m3时,超过的部分按b元/m3收费.该市某户居民今年2月份的用水量为9m3,缴纳水费27元;3月份的用水量为11m3,缴纳水费37元.(1)求a、b的值.(2)若该市某户居民今年4月份的用水量为13.5m3,则应缴纳水费多少元?24.(10分)已知:如图,四边形ABCD为矩形,AB=10,BC=3,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.(1)当点P在线段AB上运动了t秒时,BP=__________________(用代数式表示);(2)t为何值时,四边形PDEB是平行四边形:(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.25.(12分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如图①以点B为圆心,AC长为半径作弧;②以点C为圆心,AB长为半径作弧;③两弧交于点D,A,D在BC同侧;④连接AD,CD.所以四边形ABCD是矩形,根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:链接BD.∵AB=________,AC=__________,BC=BC∴ΔABC≌ΔDCB∴∠ABC=∠DCB=90°∴AB∥CD.∴四边形ABCD是平行四边形∵∠ABC=90°∴四边形ABCD是矩形.(_______________)(填推理的依据)26.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:选项A,三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,选项A正确;选项B,三条边满足关系a2=b2-c2,根据勾股定理的逆定理可得选项B正确;选项C,三条边的比为1:2:3,12+22≠32,选项C错误;选项D,三个角满足关系∠B+∠C=∠A,则∠A为90°,选项D正确.故答案选C.考点:三角形的内角和定理;勾股定理的逆定理.2、D【解析】

根据菱形、矩形、正方形的判定和角平分线的性质判断即可.【详解】解:、两条对角线互相平分且垂直的四边形是菱形,故选项是假命题;、两条对角线互相平分且相等的四边形是矩形,故选项是假命题;、两条对角线互相平分且垂直且相等的四边形是正方形,故选项是假命题;、角平分线上的点到角两边的距离相等,故选项是真命题;故选:.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、D【解析】

作辅助线PB,求证,然后证明四边形是矩形,【详解】如图,连接.在正方形中,.∵,∴,∴.∵,∴四边形是矩形,∴.∴.故选D.【点睛】本题考查了全等三角形的判定定理(SAS)以及矩形对角线相等的性质,从而求出PD的长度4、D【解析】

根据顺次连接矩形的中点,连接矩形的对边上的中点,可得新四边形的对角线是互相垂直的,并且是平行四边形,所以可得新四边形的形状.【详解】根据矩形的中点连接起来首先可得四边是相等的,因此可得四边形为菱形,故选D.【点睛】本题主要考查对角线互相垂直的判定定理,如果四边形的对角线互相垂直,则此四边形为菱形.5、D【解析】观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x=.故选D.6、A【解析】

本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A.方程x2−1=0符合一元二次方程的一般形式,正确;B.方程x3+2x+1=0的最高次数是3,故错误;C.方程3x+2=3化简为3x−1=0,该方程为一元一次方程,故错误;D.方程x2+2y=0含有两个未知数,为二元二次方程,故错误;故选A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.7、D【解析】

根据不等式的性质,对选项进行求解即可.【详解】解:、,故成立,不合题意;、,故成立,不合题意;、,故成立,不合题意;、,故不成立,符合题意.故选:.【点睛】本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.8、A【解析】

科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:0.00000012米=1.2×10﹣7米,故答案为A。【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.9、B【解析】

根据一次函数的性质可得出结论.【详解】解:因为一次项系数则随的增大而减少,函数经过二,四象限;

常数项则函数一定经过三、四象限;

因而一次函数的图象一定经过第二、三、四象限.

故选B.【点睛】本题考查了一次函数的图像和性质,熟练掌握函数的性质是解题关键.10、A【解析】

A、分子(-a+b)2=(a-b)2,再与分母约分即可;B、把分子和分母都除以-1得出结论;C、是最简分式;D、分子和分母同时扩大10倍,要注意分子和分母的每一项都要扩大10倍.【详解】A、==1,所以此选项正确;B、=≠,所以此选项错误;C、不能化简,是最简分式,所以此选项错误;D、=≠,所以此选项错误;故选:A.【点睛】本题考查了分式的化简,依据是分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变;要注意以下几个问题:①当分子、分母的系数为分数或小数时,应运用分数的基本性质将分式的分子、分母中的系数化为整数,如选项D;②当分子或分母出现完全平方式时,要知道(a-b)2=(b-a)2,如选项A;③当分子和分母的首项系数为负时,通常会乘以-1,化为正数,要注意每一项都乘,不能漏项,如选项B;④因式分解是基础,熟练掌握因式分解,尤其是平方差公式和完全平方公式.11、B【解析】

由平行四边形的性质得出BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.【详解】解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,∴BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,∵∴△OBC是直角三角形,∴.故选:B.【点睛】本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.12、B【解析】

根据算数平方根的意义解答即可.【详解】∵32=9,∴=3.故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.二、填空题(每题4分,共24分)13、1【解析】

先根据平面直角坐标系得出点的坐标,从而可得的垂直平分线,再利用待定系数法分别求出直线的解析式,从而可得其垂直平分线的解析式,联立两条垂直平分线即可求出旋转中心的坐标,然后根据旋转中心可得出旋转角为,最后利用勾股定理的逆定理即可得求出旋转角的度数.【详解】由图可知,点的坐标为,点的坐标为点关于y轴对称y轴垂直平分,即线段的垂直平分线所在直线的解析式为设直线的解析式为将点代入得:,解得则直线的解析式为设垂直平分线所在直线的解析式为的中点坐标为,即将点代入得:,解得则垂直平分线所在直线的解析式为联立,解得则旋转中心的坐标是由此可知,旋转角为是等腰直角三角形,且故答案为:,1.【点睛】本题考查了利用待定系数法求一次函数的解析式、旋转的定义、勾股定理的逆定理等知识点,掌握确定旋转中心的方法是解题关键.14、2【解析】

根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】如图,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC•BD=AB2,×12﹣AC•BD=52,AC•BD=48,故菱形ABCD的面积是48÷2=2.故答案为:2.【点睛】本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.15、【解析】

首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.【详解】解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,OP⊥AD,∴∠AOP=30°,∴AP=1,∴OP=,作PE⊥y轴,∵∠POA=30°,∴∠OPE=30°,∴OE=∴PE=,∴点P到y轴的距离为,故答案为:.【点睛】考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.16、且【解析】

根据被开方数是非负数且分母不能为零,可得答案.【详解】解:由题意,得解得x>-3且.

故答案为:x>-3且.【点睛】本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.17、2【解析】

连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t的值.【详解】连接ME根据MN垂直平分PE可得为等腰三角形,即ME=PM故答案为2.【点睛】本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.18、y=﹣x+1【解析】

根据“上加下减”的平移规律可直接求得答案.【详解】解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.故答案为:y=﹣x+1.【点睛】本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.三、解答题(共78分)19、(1)m=150;(2)该专卖店有9种进货方案;(3)此时应购进甲种运动鞋82双,购进乙种运动鞋118双.【解析】

(1)根据“用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同”列出方程并解答;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200−x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】(1)依题意得:,解得:m=150,经检验:m=150是原方程的根,∴m=150;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,解得:81≤x≤90,∵x为正整数,∴该专卖店有9种进货方案;(3)设总利润为W元,则W=(300﹣150﹣a)x+(200﹣120)(200﹣x)=(70﹣a)x+16000,①当60<a<70时,70﹣a>0,W随x的增大而增大,当x=90时,W有最大值,即此时应购进甲种运动鞋90双,购进乙种运动鞋110双;②当a=70时,70﹣a=0,W=16000,(2)中所有方案获利都一样;③当70<a<80时,70﹣a<0,W随x的增大而减小,当x=82时,W有最大值,即此时应购进甲种运动鞋82双,购进乙种运动鞋118双.【点睛】本题考查了一次函数的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系;解题时需要根据一次项系数的情况分情况讨论.20、(1)证明见解析;(2)证明见解析.【解析】

(1)由平行四边形的性质得出∠A=∠C,由ASA证明△DAE≌△DCF,即可得出DE=DF;

(2)由全等三角形的性质得出DA=DC,即可得出结论.【详解】证明:(1)∵四边形ABCD是平行四边形∴∠A=∠C,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴DE=DF;(2)由(1)可得△DAE≌△DCF∴DA=DC,又∵四边形ABCD是平行四边形∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.21、(1)-(2)【解析】【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【详解】(1)原式=-=-;(2)原式===.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.22、(1)三种方案;(2)最少运费是2010元.【解析】试题分析:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,根据车辆运送的番茄要求大于或等于20吨,青椒大于或等于12吨,可得出不等式组,解出即可.

(2)分别计算每种方案的运费,然后比较即可得出答案.试题解析:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,

依题意得:,

解得:2≤x≤1,

∵x是正整数,

∴x可取的值为2,3,1.

因此安排甲、乙两种货车有如下三种方案:甲种货车乙种货车方案一2辆6辆方案二3辆5辆方案三1辆1辆(2)方案一所需运费为300×2+210×6=2

010元;

方案二所需运费为300×3+210×5=2

100元;

方案三所需运费为300×1+210×1=2

160元.

答:王大炮应选择方案一运费最少,最少运费是2010元.23、(1);(2).【解析】

(1)该市居民用水基本价格为a元/米1,超过6米1部分的价格为b元/米1,根据2月份和1月份的缴费情况列出a和b的二元一次方程组,求出a和b的值即可;

(2)直接根据(1)求出答案即可.【详解】解:⑴根据题意得,解得答:该市居民用水基本价格为2元/米1,超过6米1部分的价格为5元/米1.⑵6×2+(11.5-6)×5=49.5(元).

答:该市某居民今年4月份的用水量为11.5立方米,则应缴纳水费49.5元.【点睛】本题主要考查了二元一次方程组的应用,解答本题的关键是根据题意列出a和b的二元一次方程组,此题难度不大.24、(1)10-2t;(2)当t=2.5s时,四边形PDEB是平行四边形;(3)t的值为12s或2s或【解析】

(1)求出PA,根据线段和差定义即可解决问题.(2)根据PB=DE,构建方程即可解决问题.(3)①当EP=ED=5时,可得四边形DEPQ,四边形DEP'Q'是菱形,②当DP″=DE【详解】解:(1)∵AB=10,PA=2t,∴BP=10-2t,故答案为10-2t.(2)当PB=DE时,四边形PDEB是平行四边形,∴10-2t=5,∴t=2.5,答:当t=2.5s时,四边形PDEB是平行四边形.(3)存在.①当EP=ED=5时,可得四边形DEPQ,四边形DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论