2024届石嘴山市重点中学八年级下册数学期末综合测试模拟试题含解析_第1页
2024届石嘴山市重点中学八年级下册数学期末综合测试模拟试题含解析_第2页
2024届石嘴山市重点中学八年级下册数学期末综合测试模拟试题含解析_第3页
2024届石嘴山市重点中学八年级下册数学期末综合测试模拟试题含解析_第4页
2024届石嘴山市重点中学八年级下册数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届石嘴山市重点中学八年级下册数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列调查的样本所选取方式,最具有代表性的是()A.在青少年中调查年度最受欢迎的男歌手B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查D.对某市的出租车司机进行体检,以此反映该市市民的健康状况2.一次函数y=2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B. C. D.4.下列说法:(1)8的立方根是.(2)的平方根是.(3)负数没有立方根.(4)正数有两个平方根,它们互为相反数.其中错误的有()A.4个 B.3个 C.2个 D.1个5.已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是()A. B.C. D.6.下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个7.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定8.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),已知,∠ACB=90°,AC=BC,AB=1.如果每块砖的厚度相等,砖缝厚度忽略不计,那么砌墙砖块的厚度为()A. B. C. D.59.若m=-4,则()A.1.5<m<2 B.2<m<2.5 C.2.5<m<3 D.3<m<3.510.如图,在△ABC中,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若∠BAD=45°,则∠B的度数为()A.75° B.65° C.55° D.45°11.如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有()A.①②③④ B.②③ C.②③④ D.②④12.某学习小组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16,则这组数据中位数是()A.12B.13C.14D.17二、填空题(每题4分,共24分)13.如图,在△ABC中,∠B=70°,∠BAC=30°,将△ABC绕点C顺时针旋转得到△EDC,当点B的对应点D恰好落在AC边上时,∠CAE的度数为___________.14.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______.15.如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)16.如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.17.使函数有意义的的取值范围是________.18.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.三、解答题(共78分)19.(8分)如图,△ABC是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的中点M.②连接BM,并延长到D,使MD=MB,连接AD,CD.(2)求证(1)中所作的四边形ABCD是菱形.20.(8分)如图,在△ABC中.AC=BC=5.AB=6.CD是AB边中线.点P从点C出发,以每秒2.5个单位长度的速度沿C-D-C运动.在点P出发的同时,点Q也从点C出发,以每秒2个单位长度的速度沿边CA向点A运动.当一个点停止运动时,另一个点也随之停止,设点P运动的时间为t秒.(1)用含t的代数式表示CP、CQ的长度.(2)用含t的代数式表示△CPQ的面积.(3)当△CPQ与△CAD相似时,直接写出t的取值范围.21.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?22.(10分)解方程:(1)2x22x50(2)4x(2x1)3(2x1)23.(10分)小强想利用树影测树高,他在某一时刻测得直立的标杆长0.8m,其影长为1m,同时测树影时因树靠近某建筑物,影子不全落在地上,有一部分落在墙上如图,若此时树在地面上的影长为5.5m,在墙上的影长为1.5m,求树高24.(10分)已知一次函数y=﹣x+1.(1)在给定的坐标系中画出该函数的图象;(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.25.(12分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7如果你是教练你会选拔谁参加比赛?为什么?26.先化简,再求值:,其中x=﹣1.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;C.只向八年级的同学进行调查不具有代表性,故本选项不符合题意;D.反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.故选B.2、D【解析】

先根据一次函数y=2x+1中k=2,b=1判断出函数图象经过的象限,进而可得出结论.【详解】∵,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D.考点:一次函数的图象.3、B【解析】

根据轴对称图形的性质,解决问题即可.【详解】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选B.【点睛】本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.4、B【解析】

(1)(3)根据立方根的定义即可判定;(2)根据算术平方根和平方根的定义即可判定;(4)根据平方根的定义即可判定.【详解】(1)8的立方根是2,原来的说法错误;(2)=16,16的平方根是±4,原来的说法错误;(3)负数有立方根,原来的说法错误;(4)正数有两个平方根,它们互为相反数是正确的.错误的有3个.故选B.【点睛】此题考查了相反数,立方根和算术平方根、平方根的性质,要掌握一些特殊数字的特殊性质,如1,-1和1.相反数的定义:只有符号相反的两个数叫互为相反数;立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1.算术平方根是非负数.5、D【解析】

根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.【详解】由勾股定理可得:A、三角形三边分别为3、,2;B、三角形三边分别为、,2;C、三角形三边分别为、2,3;D、三角形三边分别为2、,;∵D图中(2)2+()2=()2,其他三角形不符合勾股定理逆定理,∴图中的三角形是直角三角形的是D,故选:D.【点睛】此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.6、D【解析】

根据轴对称图形的概念对各图形分析判断后即可得解.【详解】平行四边形不是轴对称图形,矩形是轴对称图形,菱形是轴对称图形,等腰梯形是轴对称图形,正方形是轴对称图形,所以,轴对称图形的是:矩形、菱形、等腰梯形、正方形共4个.故选D.【点睛】此题考查轴对称图形,解题关键在于掌握其定义.7、D【解析】

解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选D.【点睛】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.8、A【解析】

根据全等三角形的判定定理证明△ACD≌△CEB,进而利用勾股定理,在Rt△AFB中,AF2+BF2=AB2,求出即可【详解】过点B作BF⊥AD于点F,设砌墙砖块的厚度为xcm,则BE=2xcm,则AD=3xcm,∵∠ACB=90,∴∠ACD+∠ECB=90,∵∠ECB+∠CBE=90,∴∠ACD=∠CBE,在△ACD和△CEB中,,∴△ACD≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=5x,AF=AD−BE=x,∴在Rt△AFB中,AF2+BF2=AB2,∴25x2+x2=12,解得,x=(负值舍去)故选A.【点睛】本题考查的是勾股定理的应用以及全等三角形的判定与性质,得出AD=BE,DC=CF是解题关键.9、B【解析】

通过62<37<72,6.52=42.25,判断出的范围即可【详解】∵62<37<72,6.52=42.25,∴6<<6.5,则2<-4<2.5,故2<m<2.5,故选B【点睛】熟练掌握二次根式的估算是解决本题的关键,难度一般10、A【解析】

由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.【详解】解:由作法得MN垂直平分AC,

∴DA=DC,

∴∠DAC=∠C=30°,

∴∠BAC=∠BAD+∠DAC=45°+30°=75°,

∵∠B+∠C+∠BAC=180°,

∴∠B=180°-75°-30°=75°.

故选:A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).11、C【解析】

利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△AFB≌△ADC,∴∠BAF=∠CAD,BF=CD,故②④正确;由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE故③正确;无法判断BE=CD,故①错误.故选:C.【点睛】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.12、C【解析】分析:根据中位数的意义求解即可.详解:从小到大排列:12,12,13,14,16,17,18,∵14排在中间,∴中位数是14.故选C.点睛:本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.二、填空题(每题4分,共24分)13、50°【解析】

由旋转可得∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,则∠CAE=∠CEA,再由三角形的外角性质可得∠CDE=∠CAE+∠AED可求出∠CAE的度数.【详解】∵△ABC绕点C顺时针旋转得到△EDC∴∠CDE=∠B=70°,∠CED=∠BAC=30°,CA=CE,∴∠CAE=∠CEA,则∠AED=∠CEA-30°又∵∠CDE=∠CAE+∠AED即∠CAE+∠CAE-30°=70°解得∠CAE=50°故答案为:50°.【点睛】本题考查三角形中的角度计算,解题的关键是利用旋转的性质得到旋转后的角度,并利用三角形的外角性质建立等量关系.14、1【解析】

根据菱形的对角线互相垂直平分,利用勾股定理即可解决.【详解】如图,四边形ABCD是菱形,AC=12,BD=16,

∵四边形ABCD是菱形,

∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,

在Rt△AOB中,AB=,

∴菱形ABCD周长为1.

故答案为1

【点睛】本题考查菱形的性质、勾股定理等知识,记住菱形的对角线互相垂直平分、菱形的四边相等是解决问题的关键,属于中考常考题型.15、①②③④【解析】分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.详解:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故答案为①②③④.点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.16、【解析】

如图,过点P作EF∥x轴,交y轴与点E,交AB于点F,则易证△CEP≌△PFD(ASA),∴EP=DF,∵P(1,1),∴BF=DF=1,BD=2,∵BD=2AD,∴BA=3∵点A在直线上,∴点A的坐标为(3,3),∴点D的坐标为(3,2),∴点C的坐标为(0,3),设直线CD的解析式为,则解得:∴直线CD的解析式为,联立可得∴点Q的坐标为.17、且【解析】

根据被开方数是非负数且分母不能为零,可得答案.【详解】解:由题意,得解得x>-3且.

故答案为:x>-3且.【点睛】本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.18、.【解析】

根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.【详解】解:根据勾股定理可得:

,即x2-8x+16+x2-4x+4=x2,

解得:x1=2(不合题意舍去),x2=10,

10-2=8(尺),

10-4=6(尺).

答:门高8尺,门宽6尺,对角线长10尺.

故答案为:.【点睛】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解题的关键.三、解答题(共78分)19、(1)①见解析;②见解析;(2)见解析【解析】

(1)根据要求画出图形即可.(2)根据对角线垂直的四边形是菱形即可判断.【详解】(1)解:如图,四边形ABCD即为所求.(2)证明:∵AM=MC,BM=MD,∴四边形ABCD是平行四边形,∵△ABC是等边三角形,AM=MC,∴BD⊥AC,∴四边形ABCD是菱形.【点睛】本题考查作图——复杂作图,线段的垂直平分线的性质,菱形的判定,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)当0<t≤时,CP=2.5t,CQ=2t;当时,CP=8-2.5t,CQ=2t.(2)当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=;当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.(3)0<t≤或s【解析】

(1)分两种情形:当0<t≤时,当<t时,分别求解即可.(2)分两种情形:当0<t≤时,当<t≤时,根据S△CPQ=•PC•sin∠ACD•CQ分别求解即可.(3)分两种情形:当0<t≤,可以证明△QCP∽△DCA,当<t,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD===4,当0<t≤时,CP=2.5t,CQ=2t,当时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD==,∴当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.(3)①当0<t≤时,∵CP=2.5t,CQ=2t,∴=,∵=,∴,∵∠PCQ=∠ACD,∴△QCP∽△DCA,∴0<t≤时,△QCP∽△DCA,②当时,当∠QPC=90°时,△QPC∽△ADC,∴,∴,解得:,综上所述,满足条件的t的值为:0<t≤或s时,△QCP∽△DCA.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.21、(1)乙队单独完成需2天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.【解析】

(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.【详解】解:(1)设乙队单独完成需x天.根据题意,得:.解这个方程得:x=2.经检验,x=2是原方程的解.∴乙队单独完成需2天.(2)设甲、乙合作完成需y天,则有,解得,y=36;①甲单独完成需付工程款为:60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、(1)x1=,2=;(2).【解析】

(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先去括号整理为一般形式,再利用因式分解法解方程即可得出两个一元一次方程,求出方程的解即可.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论