江苏省常州市2024届数学八年级下册期末检测试题含解析_第1页
江苏省常州市2024届数学八年级下册期末检测试题含解析_第2页
江苏省常州市2024届数学八年级下册期末检测试题含解析_第3页
江苏省常州市2024届数学八年级下册期末检测试题含解析_第4页
江苏省常州市2024届数学八年级下册期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市2024届数学八年级下册期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.2.已知点P的坐标为P-5,3,则点PA.一 B.二 C.三 D.四3.如图,在4×4的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则该三角形最长边的长为()A. B.3 C. D.54.下列各点中,在直线y=2x上的点是()A.(1,1)B.(2,1)C.(2,-2)D.(1,2)5.把边长为3的正方形绕点A顺时针旋转45°得到正方形,边与交于点O,则四边形的周长是()A.6 B. C. D.6.在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,、从盒子里任意摸出1个球,摸到红球的概率是()A. B. C. D.7.不等式3(x-2)≥x+4的解集是(

)A.x≥5 B.x≥3 C.x≤5 D.x≥-58.若解关于x的方程有增根,则m的值为()A.﹣5 B.5 C.﹣2 D.任意实数9.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1) C.x-1=x(1-) D.(x-1)2=x2-2x+110.方程=1的解的情况为()A.x=﹣ B.x=﹣3 C.x=1 D.原分式方程无解11.明明家与学校的图书馆和食堂在同一条直线上,食堂在家和图书馆之间。一天明明先去食堂吃了早餐,接着去图书馆看了一会书,然后回家。如图反应了这个过程中明明离家的距离y与时间x之间的对应关系,下列结论:①明明从家到食堂的平均速度为0.075km/min;②食堂离图书馆0.2km;③明明看书用了30min;④明明从图书馆回家的平均速度是0.08km/min,其中正确的个数是()A.1个 B.2个 C.3个 D.4个12.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4.其中错误的个数有(A.0个 B.1个 C.2个 D.3个二、填空题(每题4分,共24分)13.当__________时,代数式取得最小值.14.如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.15.某工厂为满足市场需要,准备生产一种大型机械设备,已知生产一台这种大型机械设备需,,三种配件共个,且要求所需配件数量不得超过个,配件数量恰好是配件数量的倍,配件数量不得低于,两配件数量之和.该工厂准备生产这种大型机械设备台,同时决定把生产,,三种配件的任务交给一车间.经过试验,发现一车间工人的生产能力情况是:每个工人每天可生产个配件或个配件或个配件.若一车间安排一批工人恰好天能完成此次生产任务,则生产一台这种大型机械设备所需配件的数量是_______个.16.已知.若整数满足.则=_________.17.若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.18.已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.三、解答题(共78分)19.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?20.(8分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:(1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),

求y与x的关系式;(2)每本字典的厚度为多少?21.(8分)先化简再求值:,其中.22.(10分)如图,在平行四边形中,点,分别在边,的延长线上,且,分别与,交于点,.求证:.23.(10分)已知函数.(1)若这个函数的图象经过原点,求的值(2)若这个函数的图象不经过第二象限,求的取值范围.24.(10分)(1)读读做做:教材中有这样的问题,观察下面的式子,探索它们的规律,=1-,=,=……用正整数n表示这个规律是______;(2)问题解决:一容器装有1L水,按照如下要求把水倒出:第一次倒出L水,第二次倒出的水量是L水的,第三次倒出的水量是L水的,第四次倒出的水量是L水的,……,第n+1次倒出的水量是L水的,……,按照这种倒水方式,这1L水能否倒完?(3)拓展探究:①解方程:+++=;②化简:++…+.25.(12分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=,直接写出MN的值.26.为了从甲、乙两名学生中选拨一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶6次,命中的环数如下:甲:7,8,6,10,10,7乙:7,7,8,8,10,8,如果你是教练你会选拨谁参加比赛?为什么?

参考答案一、选择题(每题4分,共48分)1、C【解析】

让点A的横坐标减2,纵坐标不变,可得A′的坐标.【详解】解:将点A(4,2)向左平移2个单位长度得到点A′,则点A′的坐标是(4−2,2),即(2,2),故选:C.【点睛】本题考查坐标的平移变化,用到的知识点为:左右平移只改变点的横坐标,左减右加.2、B【解析】

应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【详解】解:∵点P的坐标为P∴点P在第二象限故选:B【点睛】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、B【解析】

根据风格特点利用勾股定理求出三边长,比较即可得.【详解】AB=,BC=,AC=,<<3,所以中长边的长为3,故选B.【点睛】本题考查了勾股定理的应用,熟练掌握网格的结构特征以及勾股定理的内容是解题的关键.4、D【解析】

把相应的x的值代入解析式,看y的值是否与所给y的值相等即可.【详解】A.当x=1时,y=2,故不在所给直线上,不符合题意;B.当x=2时,y=4,故不在在所给直线上,不符合题意;C.当x=2时,y=4,故不在所给直线上,不符合题意;D.当x=1时,y=2,故在所给直线上,符合题意;故答案选:D.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数图象上点的坐标特征.5、B【解析】

由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【详解】连接BC′,∵旋转角∠BAB′=45∘,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴BC′=3−3,在等腰Rt△OBC′中,OB=BC′=3−3,在直角三角形OBC′中,OC′=(3−3)=6−3,∴OD′=3−OC′=3−3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3−3+3−3=6.故选:B.【点睛】此题考查正方形的性质,旋转的性质,解题关键在于利用勾股定理的知识求出BC′的长6、D【解析】

根据概率公式计算即可得到答案.【详解】∵盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,∴共有球2+3+4=9个,∴任意摸出1个红球的概率==,故选:D.【点睛】此题考查简单事件的概率计算公式,正确掌握概率计算公式是解题的关键.7、A【解析】

去括号、移项,合并同类项,系数化成1即可.【详解】3(x-2)≥x+43x-6≥x+42x≥10∴x≥5故选A.【点睛】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.8、A【解析】

增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母(x-1))=0,得到x=1,然后代入化为整式方程的方程算出m的值【详解】方程两边都乘(x﹣1),得x=3(x﹣1)﹣m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=﹣1,故m的值是﹣1.故选:A.【点睛】此题考查分式方程的增根,解题关键在于利用原方程有增根9、B【解析】

根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;C、x-1=x(1-),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.10、D【解析】

方程两边同时乘以x(x-1)化为整式方程,解整式方程后进行验根即可得.【详解】方程两边同时乘以x(x-1),得x2-1=x(x-1),解得:x=1,检验:当x=1时,x(x-1)=0,所以原分式方程无解,故选D.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.11、D【解析】

根据函数图象判断即可.【详解】解:明明从家到食堂的平均速度为:0.6÷8=0.075km/min,①正确;食堂离图书馆的距离为:0.8-0.6=0.2km,②正确;明明看书的时间:58-28=30min,③正确;明明从图书馆回家的平均速度是:0.8÷(68-58)=0.08km/min,④正确.故选D.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.12、D【解析】

直接利用相关实数的性质分析得出答案.【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误,无理数是无限不循环小数;③负数没有立方根,错误,负数有立方根;④16的平方根是±4,用式子表示是:16=±4故选:D.【点睛】此题考查实数,解题关键在于掌握其定义.二、填空题(每题4分,共24分)13、【解析】

运用配方法变形x2-2x+3=(x-1)2+2;得出(x-1)2+2最小时,即(x-1)2=0,然后得出答案.【详解】∵x2-2x+3=x2-2x+1+2=(x-1)2+2,∴当x-1=0时,(x-1)2+2最小,∴x=1时,代数式x2-2x+3有最小值.故答案为:1.【点睛】此题主要考查了配方法的应用,非负数的性质,得出(x-1)2+2最小时,即(x-1)2=0,这是解决问题的关键.14、答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】

先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D.E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则15、1.【解析】

设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意列不等式组可得;由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,由a,b,c都是正整数求解,即可得出答案.【详解】解:设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意得,解得,由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,则,解得,因为a,b,c都是正整数,所以a=1,b=2,c=2,所以每天生产一台这种大型机械设备所需配件的数量是40×2=80(个),这种大型机械设备台所需配件的数量是80×10=1(个).故答案为:1.【点睛】本题考查一元一次不等式组的应用,本题难点在于根据题意列不等式组求出x的取值范围.解题的关键是解一元一次不等式组得出x的取值范围.16、2【解析】

根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.【详解】解:,∴解得:.∵为整数,.∴∴故答案为:2;【点睛】本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.17、7,1【解析】

由题意知,,解得x=7,这组数据中7,1各出现两次,出现次数最多,故众数是7,1.18、1【解析】

根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.【详解】解:设这个凸多边形的边数是n,根据题意得

(n-2)•110°=3×360°,

解得n=1.

故这个凸多边形的边数是1.

故答案为:1.【点睛】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.三、解答题(共78分)19、(1)每台电冰箱的进价2000元,每台空调的进价1600元.(2)此时应购进电冰箱33台,则购进空调67台.【解析】试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元依题意得,,解得:m=2000,经检验,m=2000是原分式方程的解,∴m=2000;∴每台电冰箱的进价2000元,每台空调的进价1600元.(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,∵﹣50<0,∴W随x的增大而减小,∵33≤x≤40,∴当x=33时,W有最大值,即此时应购进电冰箱33台,则购进空调67台.20、(1)y=5x+85,(2)5cm.【解析】分析:(1)利用待定系数法即可解决问题;(2)每本字典的厚度==5(cm).详(1)解:根据题意知y与x之间是一次函数关系,故设y与x之间的关系的关系式为y=kx+b则,解得:k=5,b=85∴关系式为y=5x+85,(2)每本字典的厚度==5(cm).点睛:本题考查一次函数的应用、解题的关键是熟练掌握待定系数法解决问题.21、3.【解析】

原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将的值代入化简后的式子中计算,即可求出值.【详解】解:原式,,当时,原式.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.22、见详解【解析】

利用平行四边形的性质,结合条件可得出AF=EC,再利用全等三角形的判定与性质定理,即可得到结论.【详解】∵在平行四边形中,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵,∴AF=EC,在∆AGF与∆CHE中,∵,∴∆AGF≅∆CHE(ASA),∴AG=CH.【点睛】本题主要考查平行四边形的性质定理以及三角形全等的判定和性质定理,掌握平行四边形的性质以及ASA证三角形全等,是解题的关键.23、(1)的值为3;(2)的取值范围为:.【解析】

(1)将原点坐标(0,0)代入解析式即可得到m的值;(2)分两种情况讨论:当2m+1=0,即m=-,函数解析式为:y=-,图象不经过第二象限;当2m+1>0,即m>-,并且m-3≤0,即m≤3;综合两种情况即可得到m的取值范围.【详解】(1)将原点坐标(0,0)代入解析式,得m−3=0,即m=3,所求的m的值为3;(2)当2m+1=0,即m=−,函数解析式为:y=−,图象不经过第二象限;②当2m+1>0,即m>−,并且m−3⩽0,即m⩽3,所以有−<m⩽3;所以m的取值范围为.【点睛】此题考查一次函数的性质,一次函数图象上点的坐标特征,解题关键在于原点坐标(0,0)代入解析式.24、(1);(2)按这种倒水方式,这1L水倒不完,见解析;(3)①x=;②【解析】

(1)归纳总结得到一般性规律,写出即可;(2)根据题意列出关系式,利用得出的规律化简即可;(3)①方程变形后,利用得出的规律化简,计算即可求出解;②原式利用得出的规律变形,计算即可求出值.【详解】(1)根据题意得:=-;(2)前n次倒出的水总量为+++…+=1-+-+-+…+-=1-=,∵<1,∴按这种倒水方式,这1L水倒不完;(3)①方程整理得:[(1-)+(-)+(-)+(-)]•=,[

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论