湖北省随州市名校2024届数学八年级下册期末监测模拟试题含解析_第1页
湖北省随州市名校2024届数学八年级下册期末监测模拟试题含解析_第2页
湖北省随州市名校2024届数学八年级下册期末监测模拟试题含解析_第3页
湖北省随州市名校2024届数学八年级下册期末监测模拟试题含解析_第4页
湖北省随州市名校2024届数学八年级下册期末监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省随州市名校2024届数学八年级下册期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在中,点、、分别在边、、上,且,.下列说法中不正确的是()A.四边形是平行四边形B.如果,那么四边形是矩形.C.如果平分,那么四边形是正方形.D.如果且,那么四边形是菱形.2.如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEFA.23cm B.3cm C.43.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形4.下列说法中错误的是()A.直角三角形斜边上的中线等于斜边的一半B.等底等高三角形的面积相等C.三角形的中位线平行于第三边,并且等于第三边的一半D.如果三角形两条边的长分别是a、b,第三边长为c,则有a2+b2=c25.下列运算正确的是()A.÷=2 B.2×3=6C.+= D.3﹣=36.下列关于的方程中,有实数解的为()A. B.C. D.7.已知关于的方程的两根互为倒数,则的值为()A. B. C. D.8.如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若,则()A. B. C. D.9.一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为()A.7与7 B.7与7.5 C.8与7.5 D.8与710.菱形ABCD中,如果E、F、G、H分别是各边中点,那么四边形EFGH的形状是()A.梯形 B.菱形 C.矩形 D.正方形11.平面直角坐标系内,将点向左平移3个长度单位后得到点N,则点N的坐标是()A. B. C. D.12.如图,在平行四边形ABCO中,A(1,2),B(5,2),将平行四边形绕O点逆时针方向旋转90°得平行四边形ABCO,则点B的坐标是()A.(-2,4) B.(-2,5) C.(-1,5) D.(-1,4)二、填空题(每题4分,共24分)13.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.14.某中学人数相等的甲乙两班学生参加了同一次数学测试,两班的平均分、方差分别为甲=82分,乙=82分,S甲2=245分,S乙2=90分,那么成绩较为整齐的是______班(填“甲”或“乙”)。15.已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为.16.数据3,7,6,,1的方差是__________.17.化简:=_________.18.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.三、解答题(共78分)19.(8分)(阅读理解题)在解分式方程时,小明的解法如下:解:方程两边都乘以x﹣3,得2﹣x=﹣1﹣2①.移项得﹣x=﹣1﹣2﹣2②.解得x③.(1)你认为小明在哪一步出现了错误?(只写序号),错误的原因是.(2)小明的解题步骤完善吗?如果不完善,说明他还缺少哪一步?答:.(3)请你解这个方程.20.(8分)计算(1)×(2)()0+-(-)-221.(8分)如图,已知四边形为正方形,,点为对角线上一动点,连接,过点作.交于点,以、为邻边作矩形,连接.(1)求证:矩形是正方形;(2)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.22.(10分)解方程:(1-3y)2+2(3y-1)=1.23.(10分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.24.(10分)为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.(1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):(2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元.设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.25.(12分)今年人夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位,一条船在松花江某水段自西向东沿直线航行,在处测得航标在北偏东方向上,前进米到达处,又测得航标在北偏东方向上,如图在以航标为圆心,米长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险?()26.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF,(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知AB=2,CD=BC,请求出GE的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据特殊的平行四边形的判定定理来作答.【详解】解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.故选:C.【点睛】本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.2、D【解析】

首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,AB=AD∠B∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm∴△AEF是等边三角形,AE=AB2∴周长是33故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.3、A【解析】

根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,

∴OA=OC,OB=OD,

∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);

故选:A.【点睛】本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.4、D【解析】

根据三角性有关的性质可逐一分析选项,即可得到答案.【详解】A项正确,直角三角形斜边上的中线等于斜边的一半;B项正确,等底等高三角形的面积相等;C项正确,三角形的中位线平行于第三边,并且等于第三边的一半;D项错误如果三角形两条边的长分别是a、b,第三边长为c,则不一定是a2+b2=c2,有可能不是直角三角形.【点睛】本题考查了三角形的的性质、三角形的面积及勾股定理相关的知识,学生针对此题需要认真掌握相关定理,即可求解.5、A【解析】

根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式==2,所以A选项正确;B、原式=6×2=12,所以B选项错误;C、与不能合并,所以C选项错误;D、原式=2,所以D选项错误.故选:A.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.6、C【解析】

根据二次根式必须有意义,可以得到选项中的无理方程是否有解,从而可以解答本题.【详解】,,即故无解.A错误;,又,,即故无解,B错误;,,即有解,C正确;,,,故无解.D错误;故选C.【点睛】此题考查无理方程,解题关键在于使得二次根式必须有意义.7、C【解析】

设两根为x1,x2,根据当两根互为倒数时:x1x2=1,再根据根与系数的关系即可求解.【详解】解:设两根为x1,x2,∵关于的方程的两根互为倒数,∴x1x2=1,即2m-1=1,解得m=1.故选:C【点睛】本题考查了根与系数的关系,属于基础题,关键掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根则8、B【解析】

根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°-∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB−∠ACE=27°,故选B.【点睛】本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.9、A【解析】

根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】解:根据统计图可得:7出现了4次,出现的次数最多,则众数是7;∵共有10个数,∴中位数是第5和6个数的平均数,∴中位数是(7+7)÷2=7;故选:A.【点睛】此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.10、C【解析】分析:利用中位线的性质证明四边形EFGH为平行四边形;再根据菱形的对角线互相垂直,可证∠EHG=90°,从而根据矩形的判定:有一角为90°的平行四边形是矩形,得出菱形中点四边形的形状.详解:∵菱形ABCD中,如果E、F、G、H分别是各边的中点,∴HE∥GF∥AC,HE=GF=AC,∴四边形EFGH为平行四边形;又∵菱形的对角线互相垂直,∴∠EHG=90°,∴四边形EFGH的形状是矩形.故选:C.点睛:此题主要考查了菱形的性质,三角形中位线定理,矩形的判定.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.11、B【解析】

向左平移3个长度单位,即点M的横坐标减3,纵坐标不变,得到点N.【详解】解:点A(m,n)向左平移3个长度单位后,坐标为(m-3,n),

即点N的坐标是(m-3,n),

故选B.【点睛】本题考查坐标与图形变化-平移,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12、B【解析】

直接利用旋转的性质B点对应点到原点距离相同,进而得出坐标.【详解】解:∵将▱ABCO绕O点逆时针方向旋转90°到▱A′B′C′O的位置,B(5,2),∴点B′的坐标是:(-2,5).故选:B.【点睛】此题主要考查了平行四边形的性质以及旋转的性质,正确掌握平行四边形的性质是解题关键.二、填空题(每题4分,共24分)13、6【解析】

由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.14、乙【解析】

根据方差的定义,对S甲2和S乙2比大小,方差越小数据越稳定,即可得出答案.【详解】解:两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分∴S甲2>S乙2∴成绩较为整齐的是乙.故答案是乙.【点睛】本题考查了方差的定义即方差越小数据越稳定,学生们掌握此定义即可.15、y=﹣1x【解析】试题分析:根据点在直线上点的坐标满足方程的关系,把点A的坐标代入函数解析式求出k值即可得解:∵正比例函数y=kx的图象经过点A(﹣1,1),∴﹣k=1,即k=﹣1.∴正比例函数的解析式为y=﹣1x.16、10.8【解析】

根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:(3+7+6-2+1)÷5=3,

则这组数据的方差是:[(3-3)2+(7-3)2+(6-3)2+(-2-3)2+(1-3)2]=10.8故答案为:10.8【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、【解析】

根据根式的性质即可化简.【详解】解:=【点睛】本题考查了根式的化简,属于简单题,熟悉根式的性质是解题关键.18、105°或45°【解析】试题分析:如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,考点:(1)、菱形的性质;(2)、等腰三角形的性质三、解答题(共78分)19、(1)①;﹣2没有乘以最简公分母;(2)小明得解题步骤不完善,少了检验;(3)分式方程无解.【解析】

(1)出现错误的步骤为第一步,原因是各项都要乘以最简公分母;

(2)不完善,最后没有进行检验;

(3)写出正确解题过程即可.【详解】解:(1)出现错误的为①,原因是﹣2没有乘以最简公分母;故答案为:①;﹣2没有乘以最简公分母;(2)小明得解题步骤不完善,少了检验;(3)去分母得:2﹣x=﹣1﹣2(x﹣3),去括号得:2﹣x=﹣1﹣2x+6,移项合并得:x=3,经检验x=3是增根,分式方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20、(1);(2)2-1【解析】

(1)首先计算二次根式的乘法,再计算二次根式的除法即可;(2)首先计算零次幂、二次根式的化简、负整数指数幂,然后再计算加减即可.【详解】解:(1)原式===×=×=;(2)原式=1+2-4=2-1.【点睛】此题主要考查了二次根式的混合运算和零次幂、负整数指数幂,关键是熟练掌握各计算公式和计算法则.21、(1)见解析(2)是定值,8【解析】

(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,即可得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;

(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=8即可.【详解】(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,

∵正方形ABCD,

∴∠BCD=90°,∠ECN=45°,

∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,

∴四边形EMCN为正方形,

∵四边形DEFG是矩形,

∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,

∴∠DEN=∠MEF,

又∠DNE=∠FME=90°,

在△DEN和△FEM中,∴△DEN≌△FEM(ASA),

∴ED=EF,

∴矩形DEFG为正方形,

(2)CE+CG的值为定值,理由如下:

∵矩形DEFG为正方形,

∴DE=DG,∠EDC+∠CDG=90°,

∵四边形ABCD是正方形,

∵AD=DC,∠ADE+∠EDC=90°,

∴∠ADE=∠CDG,

在△ADE和△CDG中,∴△ADE≌△CDG(SAS),

∴AE=CG,

∴AC=AE+CE=AB=×4=8,

∴CE+CG=8是定值.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的性质与判定,三角形的全等的性质和判定,勾股定理的综合运用,解本题的关键是作出辅助线,构造三角形全等,利用全等三角形的对应边相等得出结论.22、【解析】

先变形,再分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.23、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】

试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.试题解析:(1)∵-(a-4)2≥0,,∴a=4,b=2,c=8,∴直线y=bx+c的解析式为:y=2x+8,∵正方形OABC的对角线的交点D,且正方形边长为4,∴D(2,2);(2)存在,理由为:对于直线y=2x+8,当y=0时,x=-4,∴E点的坐标为(-4,0),根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线为y=2x+t,代入D点坐标(2,2),得:2=4+t,即t=-2,∴平移后的直线方程为y=2x-2,令y=0,得到x=1,∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,则t=5秒;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,∵∠OPM=∠HPQ=90°,∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,∴∠OPH=∠MPQ,∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,∴PH=PQ,在△OPH和△MPQ中,,∴△OPH≌△MPQ(AAS),∴OH=QM,∵四边形CNPG为正方形,∴PG=BQ=CN,∴CP=PG=BM,即.考点:一次函数综合题.【详解】请在此输入详解!24、(1)甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.【解析】

(1)根据用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同,可以得到相应的分式方程,从而可以解答本题;(2)根据题意,可以得到w与m的函数关系式,再根据甲种运动鞋的进货数量不少于乙种运动鞋数量的,可以得到m的取值范围,最后根据一次函数的性质即可得到w的最大值.【详解】解:(1)设甲种运动鞋的价格是每双x元,则乙种运动鞋每双价格是(x﹣60)元,,解得,x=200,经检验,x=200是原分式方程的解,∴x﹣60=140,答:甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)由题意可得,w=(350﹣200)m+(300﹣140)×(200﹣m)=﹣10m+32000,∵甲种运动鞋的进货数量不少于乙种运动鞋数量的,∴m≥(200﹣m),解得,m≥50,∴当m=50时,w取得最大值,此时w=31500,答:w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用不等式的性质和一次函数的性质解答,注意分式方程要检验.25、没有被浅滩阻碍的危险【解析】

过点C作CD⊥AB于点D,在直角△ACD和直角△BDC中,AD,BD都可以用CD表示出来,根据AB的长,就得到关于CD的方程,就可以解得CD的长,与120米进行比较即可.【详解】过点作,设垂足为,在中,在中,米米.米>米,故没有危险.答:若船继续前进没有被浅滩阻碍的危险.【点睛】本题考查了解直角三角形的知识,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.26、(1)CF⊥BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论