![2024年云南省玉溪市红塔区云数学八年级下册期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M02/1C/24/wKhkGWYg97eAXb5UAAJKPg1us8A837.jpg)
![2024年云南省玉溪市红塔区云数学八年级下册期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M02/1C/24/wKhkGWYg97eAXb5UAAJKPg1us8A8372.jpg)
![2024年云南省玉溪市红塔区云数学八年级下册期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M02/1C/24/wKhkGWYg97eAXb5UAAJKPg1us8A8373.jpg)
![2024年云南省玉溪市红塔区云数学八年级下册期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M02/1C/24/wKhkGWYg97eAXb5UAAJKPg1us8A8374.jpg)
![2024年云南省玉溪市红塔区云数学八年级下册期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M02/1C/24/wKhkGWYg97eAXb5UAAJKPg1us8A8375.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年云南省玉溪市红塔区云数学八年级下册期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在ABCD中,∠A=40°,则∠C=()A.40° B.50° C.130° D.140°2.计算的结果是()A.-2 B.2 C.-4 D.43.如图,在△ABC中,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若∠BAD=45°,则∠B的度数为()A.75° B.65° C.55° D.45°4.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3) B.(﹣4,3) C.(0,﹣3) D.(0,3)5.如图,四边形和四边形是以点为位似中心的位似图形,若,四边形的面积等于4,则四边形的面积为()A.3 B.4 C.6 D.96.为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是()A.选择七年级一个班进行调查B.选择八年级全体学生进行调查C.选择全校七至九年级学号是5的整数倍的学生进行调查D.对九年级每个班按5%的比例用抽签的方法确定调查者7.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠BAC=112°,则∠DAE的度数为()A.68° B.56° C.44° D.24°8.如图,已知一次函数,随着的增大而增大,且,则在直角坐标系中它的图象大致是()A. B. C. D.9.设方程x2+x﹣2=0的两个根为α,β,那么(α﹣2)(β﹣2)的值等于()A.﹣4 B.0 C.4 D.210.数据0,1,2,3,x的平均数是2,则这组数据的方差是()A.2 B. C.10 D.二、填空题(每小题3分,共24分)11.正方形按如图所示的方式放置,点.和.分别在直线和x轴上,已知点,则Bn的坐标是____________12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到点D,则橡皮筋被拉长了_____cm.13.若关于x的方程产生增根,那么m的值是______.14.若一个多边形的各边都相等,它的周长是63,且它的内角和为900°,则它的边长是________.15.大型古装历史剧《那年花开月正圆》火了“晋商”一词,带动了晋商文化旅游的发展.图是清代某晋商大院艺术窗的一部分,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为________cm.16.某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.17.如图,,以点为圆心,任意长为半径画弧,交于点,交于点,再分别以点、为圆心,大于长为半径画弧交于点,过点作射线,在射线上截取,过点作,垂足为点,则的长为________________.18.四边形ABCD中,AD∥BC,AD=BC,对角线AC、BD相交于点O,若CD=3cm,△BOC的周长比△AOB的周长大2cm,则四边形ABCD的周长=______cm.三、解答题(共66分)19.(10分)阅读下面的解题过程,解答后面的问题:如图1,在平面直角坐标系xoy中,Ax1,y1,Bx2,解:分别过A,C做x轴的平行线,过B,C做y轴的平行线,两组平行线的交点如图1所示,设Cx0,y0,则由图1可知:x0=∴线段AB的中点C的坐标为x(应用新知)利用你阅读获得的新知解答下面的问题:(1)已知A-1,4,B3,-2,则线段(2)平行四边形ABCD中,点A,B,C的坐标分别为1,-4,0,2,5,6,利用中点坐标公式求点D的坐标。(3)如图2,点B6,4在函数y=12x+1的图象上,A5,2,C在x轴上,D在函数y=12x+1的图象上,以A,B,20.(6分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘,∠B=∠ADC=90°.E、F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_________;探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55海里/小时的速度前进,舰艇乙沿北偏东50°的方向以75海里/小时的速度前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.21.(6分)如图,正比例函数的图象与反比例函数的图象交于,两点,其中点的横坐标为.(1)求的值.(2)若点是轴上一点,且,求点的坐标.22.(8分)已知:如图所示,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)试说明:AE=AF;(2)若∠B=60°,点E,F分别为BC和CD的中点,试说明:△AEF为等边三角形.23.(8分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点E在CD边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为,且.⑴求线段CE的长;⑵若点H为BC边的中点,连结HD,求证:.24.(8分)某花卉基地出售文竹和发财树两种盆栽,其单价为:文竹盆栽12元/盆,发财树盆栽15元/盆。如果同一客户所购文竹盆栽的数量大于800盆,那么每盆文竹可降价2元.某花卉销售店向花卉基地采购文竹400盆~900盆,发财树若干盆,此销售店本次用于采购文竹和发财树恰好花去12000元.然后再以文竹15元,发财树20元的单价实卖出.若设采购文竹x盆,发财树y盆,毛利润为W元.(1)当时,y与x的数量关系是_______,W与x的函数解析式是_________;当时,y与x的数量关系是___________,W与x的函数解析式是________;(2)此花卉销售店应如何采购这两种盆栽才能使获得毛利润最大?25.(10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.26.(10分)小明通过试验发现;将一个矩形可以分别成四个全等的矩形,三个全等的矩形,二个全等的矩形(如上图),于是他对含的直角三角形进行分别研究,发现可以分割成四个全等的三角形,三个全等的三角形.(1)请你在图1,图2依次画出分割线,并简要说明画法;(2)小明继续想分割成两个全等的三角形,发现比较困难.你能把这个直角三角形分割成两个全等的三角形吗?若能,画出分割线;若不能,请说明理由.(注:备用图不够用可以另外画)
参考答案一、选择题(每小题3分,共30分)1、A【解析】因为平行四边形的对角相等,所以∠A=∠C=40°,故选A2、B【解析】
根据(a≥0)可得答案.【详解】解:,故选:B.【点睛】此题主要二次根式的性质,关键是掌握二次根式的基本性质:①≥0;a≥0(双重非负性).②(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③(算术平方根的意义).3、A【解析】
由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.【详解】解:由作法得MN垂直平分AC,
∴DA=DC,
∴∠DAC=∠C=30°,
∴∠BAC=∠BAD+∠DAC=45°+30°=75°,
∵∠B+∠C+∠BAC=180°,
∴∠B=180°-75°-30°=75°.
故选:A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).4、C【解析】试题分析:本题考查了点的坐标、关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减,纵坐标不变;根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,即平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),可得关于原点的对称点,再根据点的坐标向左平移减,纵坐标不变,可得答案.解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选C.考点:1.关于原点对称的点的坐标;2.坐标与图形变化-平移.5、D【解析】
利用位似的性质得到AD:A'D'=OA:OA'=2:3,再利用相似多边形的性质得到得到四边形A'B'C'D'的面积.【详解】解:∵四边形ABCD和四边形A'B'C'D'是以点O为位似中心的位似图形,AD:A'D'=OA:04'=2:3,∴四边形ABCD的面积:四边形A'B'C'D'的面积=4:9,又∵四边形ABCD的面积等于4,∴四边形A'B'C'D'的面积为9.故选:D【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫位似中心,注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行(或共线)6、C【解析】
直接利用抽样调查必须具有代表性,进而分析得出答案.【详解】抽样调查的样本代表性较好的是:选择全校七至九年级学号是5的整数倍的学生进行调查,故选C.【点睛】此题主要考查了抽样调查的可靠性,正确把握抽样调查的意义是解题关键.7、C【解析】
根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.【详解】解:∠B+∠C=180°-∠BAC=68°,
∵AB的垂直平分线交BC于D,
∴DA=DB,
∴∠DAB=∠B,
∵AC的中垂线交BC于E,
∴EA=EC,
∴∠EAC=∠C,
∴∠DAE=∠BAC-(∠DAB+∠EAC)=112°-68°=44°,
故选:C.【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8、A【解析】
首先根据一次函数的增减性确定k的符号,然后根据确定b的符号,从而根据一次函数的性质确定其图形的位置即可.【详解】∵随的增大而增大,∴.又∵,∴,∴一次函数过第一、三、四象限,故选A.【点睛】本题考查的是一次函数的图象与系数的关系,熟知函数y=kx+b(k≠0)中,当k>0,b<0时函数的图象在一、三、四象限是解答此题的关键.9、C【解析】试题分析:根据方程的系数利用根与系数的关系找出α+β=﹣1,α•β=﹣2,将(α﹣2)(β﹣2)展开后代入数据即可得出结论.∵方程+x﹣2=0的两个根为α,β,∴α+β=﹣1,α•β=﹣2,∴(α﹣2)(β﹣2)=α•β﹣2(α+β)+1=﹣2﹣2×(﹣1)+1=1.故选C.考点:根与系数的关系.10、A【解析】试题分析:先根据平均数公式求得x的值,再根据方差的计算公式求解即可.解:由题意得,解得所以这组数据的方差故选A.考点:平均数,方差点评:本题属于基础应用题,只需学生熟练掌握方差的计算公式,即可完成.二、填空题(每小题3分,共24分)11、(2n-1,2n-1)【解析】
首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后由待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).【详解】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),∴,解得:,∴直线A1A2的解析式是:y=x+1.∵点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n-1,纵坐标是:2n-1.∴Bn的坐标是(2n-1,2n-1).故答案为:(2n-1,2n-1).【点睛】此题考查了待定系数法求一次函数的解析式以及正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想与方程思想的应用.12、2.【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案为2.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用.13、1【解析】
分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.【详解】分式方程去分母得:x−1=m+2x−4,由题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故答案为:1.【点睛】此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.14、9【解析】
设多边形的边数为n,先根据多边形的内角和求出多边形的边数,再根据周长即可求出边长.【详解】设多边形的边数为n,由题意得(n-2)·180°=900°解得n=7,则它的边长是63÷7=9.【点睛】本题考查的是多边形的内角和,解答的关键是熟练掌握多边形的内角和公式:(n-2)·180°.15、7【解析】
根据勾股定理的几何意义可得正方形S的面积,继而根据正方形面积公式进行求解即可.【详解】根据勾股定理的几何意义,可知S=SE+SF=SA+SB+SC+SD=49cm2,所以正方形S的边长为=7cm,故答案为7.【点睛】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.16、10【解析】
根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.【详解】解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+1.将x=11代入一次函数解析式,故出租车费为10元.故答案为:10.【点睛】此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.17、5cm【解析】
根据角平分线的性质、RT△中,30°所对的直角边等于斜边的一般,本题得以解决.【详解】解:由题意可得,
OC为∠MON的角平分线,
∵,OC平分∠AOB,∴∠MOP=∠MON=30°,
∵,∴∠ODP=90°,∵OP=10,
∴PD=OP=5,故答案为:5cm.【点睛】本题考查了角平分线的性质及直角三角形的性质,解题的关键是掌握直角三角形的性质.18、16【解析】
根据条件可得:四边形ABCD是平行四边形,得,根据△BOC的周长比△AOB的周长大2cm,可得的长,求解即可.【详解】∵四边形ABCD中,AD∥BC,AD=BC∴四边形ABCD是平行四边形∴OA=OC,AB=CD=3∵△BOC的周长比△AOB的周长大2cm∴OB+OC+BC=OB+OA+AB+2∴BC=AB+2=5∴四边形ABCD的周长:5+5+3+3=16(cm)故答案为:16【点睛】本题考查了平行四边形边长的问题,掌握平行四边形的性质是解题的关键.三、解答题(共66分)19、(1)线段AB的中点坐标是1,1;(2)点D的坐标为6,0;(3)符合条件的D点坐标为D2,2或D【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出xA+x(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.【详解】解:(1)AB中点坐标为-1+32,4-22,即AB的中点坐标是:((2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:xA+代入数据,得:1+52=解得:xD=6,yD=0,所以点(3)当AB为该平行四边形一边时,则CD//AB,对角线为AD、BC或AC、BD;故可得:xA+xD2=x故可得yC-y∵y∴yD代入到y=12x+1中,可得D综上,符合条件的D点坐标为D2,2或D【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,综合性较强.20、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.【解析】
问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;实际应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】问题背景:EF=BE+DF,证明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF,故答案为EF=BE+DF;探索延伸:结论EF=BE+DF仍然成立,理由:延长FD到点G.使DG=BE,连结AG,如图2,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=2×(45+75)=260(海里),答:此时两舰艇之间的距离是260海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.21、(1)k=2;(2)P点的坐标为或.【解析】
(1)把代入正比例函数的图象求得纵坐标,然后把的坐标代入反比例函数,即可求出的值;(2)因为、关于点对称,所以,即可求得,然后根据三角形面积公式列出关于的方程,解方程即可求得.【详解】解:(1)正比例函数的图象经过点,点的横坐标为.,点,∵反比例函数的图象经过点,;(2),,设,则,,即,点的坐标为或.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识点,利用数形结合是解答此题的关键.22、(1)见详解;(2)见详解【解析】
(1)由菱形的性质可得AB=AD,∠B=∠D,又知BE=DF,所以利用SAS判定△ABE≌△ADF从而得到AE=AF;
(2)连接AC,由已知可知△ABC为等边三角形,已知E是BC的中点,则∠BAE=∠DAF=30°,即∠EAF=60°.因为AE=AF,所以△AEF为等边三角形.【详解】(1)由菱形ABCD可知:AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF;(2)连接AC,∵菱形ABCD,∠B=60°,∴△ABC为等边三角形,∠BAD=120°,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一的性质),∴∠BAE=30°,同理∠DAF=30°,∴∠EAF=60°,由(1)可知AE=AF,∴△AEF为等边三角形.【点睛】此题主要考查学生对菱形的性质,全等三角形的判定及等边三角形的判定的理解及运用,灵活运用是关键.23、(1)CE=;(2)见解析.【解析】
根据正方形的性质,(1)先设CE=x(0<x<1),则DE=1-x,由S1=S2,列等式即可得到答案.(2)根据勾股定理得到HD,再由H,C,G在同一直线上,得证HD=HG.【详解】根据题意,得AD=BC=CD=1,∠BCD=90°.(1)设CE=x(0<x<1),则DE=1-x,因为S1=S2,所以x2=1-x,解得x=(负根舍去),即CE=(2)因为点H为BC边的中点,所以CH=,所以HD=,因为CG=CE=,点H,C,G在同一直线上,所以HG=HC+CG=+=,所以HD=HG【点睛】本题考查正方形的性质、勾股定理和一元二次函数,解题的关键是根据题意列出一元二次函数.24、(1)当时,(或填),;当时,(或填),;(2)采购文竹900盆,发财树200盆,毛利润最大为5500元【解析】
(1)根据题意,可直接列出关系式;(2)根据题意,分情况进行分析,进而得出采购文竹900盆,发财树200盆,毛利润最大为5500元.【详解】(1)根据题意,可得当时,(或填),即;当时,(或填),即;(2)当时,∵,W
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年烤蜡炉项目可行性研究报告
- 2025至2031年中国活化净水器行业投资前景及策略咨询研究报告
- 2025至2031年中国串心光脚线行业投资前景及策略咨询研究报告
- 2025至2031年中国A/C群脑膜炎球菌结合疫苗行业投资前景及策略咨询研究报告
- 2025至2030年钢钉电线卡项目投资价值分析报告
- 2025至2030年中国金属陈列柜数据监测研究报告
- 2025至2030年电子防晕仪项目投资价值分析报告
- 2025至2030年洁阴喷剂项目投资价值分析报告
- 2025至2030年低温制冷用双螺杆压缩机项目投资价值分析报告
- 单位车辆租赁协议
- 麦当劳市场调研
- 《电机与电气控制(第三版)》 课件全套 课题1-6 直流电机的应用- 常用机床电气控制线路的安装与调试
- 视频监控维保项目投标方案(技术标)
- 2024标准版安全生产责任制培训记录
- 中英旅游文本用词的共同特点及其翻译
- Meta分析的步骤与实例分析
- 城市区域环境噪声监测实验报告
- MBTI量表完整版本
- 护理操作-吸痰
- 中医适宜技术-腕踝针
- 初二上劳动技术课件电子版
评论
0/150
提交评论