西藏自治区日喀则市南木林县2024年八年级数学第二学期期末监测试题含解析_第1页
西藏自治区日喀则市南木林县2024年八年级数学第二学期期末监测试题含解析_第2页
西藏自治区日喀则市南木林县2024年八年级数学第二学期期末监测试题含解析_第3页
西藏自治区日喀则市南木林县2024年八年级数学第二学期期末监测试题含解析_第4页
西藏自治区日喀则市南木林县2024年八年级数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏自治区日喀则市南木林县2024年八年级数学第二学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.关于的一元二次方程(,是常数,且),()A.若,则方程可能有两个相等的实数根 B.若,则方程可能没有实数根C.若,则方程可能有两个相等的实数根 D.若,则方程没有实数根2.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③3.若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是()A.甲 B.乙C.同时到达 D.无法确定4.分式可变形为(

)A.

B.

C.

D.5.如果一个多边形的内角和等于它的外角和,那么这个多边形是()A.六边形 B.五边形 C.四边形 D.三角形6.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的个数是()A.1 B.2 C.1 D.47.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8xD.x2+1=x(x+)8.若kb<0,则一次函数的图象一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限9.如图,中,增加下列选项中的一个条件,不一定能判定它是矩形的是()A. B. C. D.10.如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为A. B. C. D.二、填空题(每小题3分,共24分)11.(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.12.比较大小:23____32(填“>、<、或=”).13.如图,在RtΔABC中,∠ACB=90°,D是AB的中点,若∠A=2614.已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)15.如图,已知直线y=x与反比例函数y=的图象交于A,B两点,且点A的横坐标为.在坐标轴上找一点C,直线AB上找一点D,在双曲线y=找一点E,若以O,C,D,E为顶点的四边形是有一组对角为60∘的菱形,那么符合条件点D的坐标为___.16.如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=DM,HN=2NE,HC与NM的延长线交于点P,则PC的值为_____.17.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有▲人.18.将一次函数的图象向上平移个单位得到图象的函数关系式为________________.三、解答题(共66分)19.(10分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:(2)在(1)所画的平行四边形中任选-一个,求出其面积.20.(6分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。(1)直接写出与之间的函数关系式;(2)分别求出第10天和第15天的销售金额。(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?21.(6分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.(1)求证:;(2)求证,四边形BCFD是平行四边形;(3)若,,求四边形ADCF的面积.22.(8分)材料:思考的同学小斌在解决连比等式问题:“已知正数,,满足,求的值”时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出,,之间的关系,从而解决问题.过程如下:解;设,则有:,,,将以上三个等式相加,得.,,都为正数,,即,..仔细阅读上述材料,解决下面的问题:(1)若正数,,满足,求的值;(2)已知,,,互不相等,求证:.23.(8分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.24.(8分)如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.(1)猜想∠MAN的大小是否变化,并说明理由;(2)如图1,当N点恰为BC中点时,求DM的长度;(3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.25.(10分)如图,函数的图象经过,,其中,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连结AD,DC,CB,AC与BD相交于点E.(1)若的面积为4,求点B的坐标;(2)四边形ABCD能否成为平行四边形,若能,求点B的坐标,若不能说明理由;(3)当时,求证:四边形ABCD是等腰梯形.26.(10分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

求出∆=b2+8a,根据b2+8a的取值情况解答即可.【详解】∵,∴,∴∆=b2+8a,A.∵a>0,∴b2+8a>0,∴方程一定有两个相等的实数根,故A、B错误;C.当a<0,但b2+8a≥0时,方程有实根,故C正确,D错误.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.2、B【解析】

随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【点睛】本题考查了利用频率估计概率,明确概率的定义是解题的关键.3、B【解析】

设从A地到B地的路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。【详解】解:设从到达目的地路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,由题意得,而对于乙:解得:因为当a≠b时,(a+b)2>4ab,所以<1所以t甲>t乙,即甲先到达,故答案为B.【点睛】本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,本题解题的关键是表示出甲乙所用时间,并选择适当的方法比较出二者的大小.4、D【解析】

根据分式的性质,可化简变形.【详解】.故答案为:D【点睛】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.5、C【解析】

根据多边形内角和公式:(n-2)×180°和任意多边形外角和为定值360°列方程求解即可.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=1.故选:C.【点睛】本题考查的知识点多边形的内角和与外交和,熟记多边形内角和公式是解题的关键.6、C【解析】

根据正方形基本性质和相似三角形性质进行分析即可.【详解】①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.所以BG=1=6﹣1=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EF=DE=2,GF=1,∴EG=5,∴∴S△FGC=S△GCE﹣S△FEC=故选C.【点睛】考核知识点:相似三角形性质.7、A【解析】

根据因式分解的概念逐项判断即可.【详解】A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;D、在等式的右边不是整式,故D不正确;故选A.8、D【解析】

根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【详解】∵kb<0,∴k、b异号。①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系9、B【解析】

根据矩形的判定定理逐个判断即可.【详解】A、∵四边形ABCD是平行四边形,,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵,∴OA=OB,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.【点睛】本题考查了矩形的判定定理,能熟记矩形的判定定理的内容是解此题的关键,注意:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形.10、B【解析】

根据折叠前后对应角相等即可得出答案.【详解】解:设∠ABE=x,

根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.故选B.【点睛】本题考核知识点:轴对称.解题关键点:理解折叠的意义.二、填空题(每小题3分,共24分)11、4或﹣1.【解析】

根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.12、<【解析】试题分析:将两式进行平方可得:(23)2=12,(32)13、52【解析】

根据直角三角形的性质得AD=CD,由等腰三角形性质结合三角形外角性质可得答案.【详解】∵∠ACB=90°,D是AB上的中点,∴CD=AD=BD,∴∠DCA=∠A=26°,∴∠BDC=2∠A=52°.故答案为52.【点睛】此题考查了直角三角的性质及三角形的外角性质,掌握直角三角形斜边中线等于斜边一半的性质是解题的关键.14、61.8m或38.2m【解析】由于C为线段AB=100cm的黄金分割点,则AC=100×61.8m或AC=100-38.238.2m.15、(3,3)或(−3,−3).【解析】

把A的横坐标代入直线解析式求出y的值,确定出A坐标,把A坐标代入反比例解析式求出k的值,确定出反比例解析式,设D(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60°,以O、C、D、E为顶点的四边形是有一组对角为60°的菱形,D在直线y=x上,得到点C只能在y轴上,得出E横坐标为a,把x=a代入反比例函数解析式求出y的值,确定出E坐标,由菱形的边长相等得到OD=ED,进而求出a的值,确定出满足题意D的坐标即可.【详解】把x=代入y=x,得:y=3,即A(,3),把点A(,3)代入y=kx,解得:k=3,∴反比例函数解析式为y=,设D点坐标(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60∘,∵以O、C.D.

E为顶点的四边形是有一组对角为60∘的菱形,D在直线y=x上,∴点C只能在y轴上,∴E点的横坐标为a,把x=a代入y=,得:y=,即E(a,,根据OE=ED,即:,解得:a=±3,则满足题意D为(3,3)或(−3,−3).故答案为:(3,3)或(−3,−3).【点睛】考核知识点:反比例函数与几何结合.数形结合分析问题是关键.16、1【解析】

根据已知首先求出MC=1,HN=2,再利用平行线分线段成比例定理得到,进而得出PH=6,所以PC=PH-CH=1.【详解】解:∵正方体的棱长为1,点M,N分别在CD,HE上,CM=DM,HN=2NE,

∴MC=1,HN=2,

∵DC∥EH,

∴,

∵HC=1,

∴PC=1,

∴PH=6,

∴PC=PH-CH=1.

故答案为:1.【点睛】本题考查了平行线分线段成比例定理等知识,根据已知得出PH的长是解决问题的关键.17、216【解析】由题意得,50个人里面坐公交车的人数所占的比例为:15/50=30%,故全校坐公交车到校的学生有:720×30%=216人.即全校坐公交车到校的学生有216人.18、.【解析】

根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.【详解】解:把一次函数的图象向上平移3个单位后,得到的图象对应的函数关系式为.故答案为:.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b-m.三、解答题(共66分)19、(1)见解析;(2)见解析【解析】

(1)根据平行四边形的性质即可得到结论;(2)根据平行四边形的面积公式计算即可得到结论.【详解】解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;(2)菱形DBFG面积===12或平行四边形面积==15【点睛】本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元.【解析】

(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;

(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;

(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式-6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据p=x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.【详解】解:(1)分两种情况:

①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,

∵直线y=k1x过点(15,30),

∴15k1=30,解得k1=2,

∴y=2x(0≤x≤15);

②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,

∵点(15,30),(20,0)在y=k2x+b的图象上,

∴,解得:,

∴y=-6x+120(15<x≤20);

综上,可知y与x之间的函数关系式为:(2))∵第10天和第15天在第10天和第20天之间,

∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,

∵点(10,10),(20,8)在p=mx+n的图象上,

∴,解得:,

∴(10≤x≤20),当时,销售单价为10元,销售金额为10×20=200(元);当时,销售单价为9元,销售金额为9×30=270(元);(3)若日销售量不低于1千克,则,当时,,由得;当时,,由,得,∴,∴“最佳销售期”共有16-12+1=5(天).∵,,∴随的增大而减小,∴当时,取12时有最大值,此时,即销售单价最高为9.6元.故答案为:(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元.【点睛】本题考查一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.21、(1),见解析;(2)四边形BCFD是平行四边形,见解析;(3).【解析】

(1)欲证明DE=EF,只要证明△AEF≌△CED即可;

(2)只要证明BC=DF,BC∥DF即可;

(3)只要证明AC⊥DF,求出DF、AC即可;【详解】(1)证明:∵,∴,∵,,∴,∴.(2)∵,,∴,,∵,∴,∴四边形BCFD是平行四边形.(3)在中,,,∴,,,∴,∵DE∥BC,∴,∴,∴.【点睛】本题考查平行四边形的判定和性质、三角形的中位线定理.解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)k=;(2)见解析.【解析】

(1)根据题目中的例子可以解答本题;

(2)将题目中的式子巧妙变形,然后化简即可证明结论成立.【详解】解:(1)∵正数x、y、z满足,

∴x=k(2y+z),y=k(2z+x),z=k(2x+y),

∴x+y+z=3k(x+y+z),

∵x、y、z均为正数,

∴k=;

(2)证明:设=k,

则a+b=k(a-b),b+c=2k(b-c),c+a=3k(c-a),

∴6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a),

∴6(a+b)+3(b+c)+2(c+a)=1,

∴8a+9b+5c=1.故答案为:(1)k=;(2)见解析.【点睛】本题考查比例的性质、等式的基本性质,正确理解给出的解题过程是解题的关键.23、(1)详见解析;(2)详见解析;(3),理由详见解析.【解析】

(1)根据SAS即可证明;

(2)欲证明DF=DG,只要证明∠DFG=∠DGF;

(3)如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.首先说明G是△BEF的内心,由题意Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,推出FH=FM,EH=EN,GN=GM=BM=BN=y,由EH:FH=1:3,设EH=a,则FH=3a,FB=3a+y,BE=a+y,EC=AF,推出FB+BE=2x,可得3a+y+a+y=2x,即y=x-2a,推出CN=2a,推出CE=a,想办法用a表示x、y即可解决问题;【详解】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠C=∠BAD=∠DAF=90°,CD=DA,在△ADF和△CDE中,∴△ADF≌△CDE.(2)证明:如图1中,∵四边形ABCD是正方形,∴∠FBG=45°,∵△ADF≌△CDE,∴DF=DE,∠ADF=∠CDE,∴∠EDF=∠ADC=90°,∠DFE=45°,∵∠DFG=45°+∠EFG,∠DGF=45°+∠GFB,∵∠EFG=∠BFG,∴∠DFG=∠DGF,∴DF=DG.(3)结论:理由:如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.∵GF平分∠BAE,DB平分∠EBF,∴G是△BEF的内心,∵GH⊥EF,∴GH=GN=GM=y,∵FG=FG,EG=EG,∴Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,∴FH=FM,EH=EN,GN=GM=BM=BN=y,∵EH:FH=1:3,设EH=a,则FH=3a,∵FB=3a+y,BE=a+y,∵EC=AF,∴FB+BE=2x,∴3a+y+a+y=2x,∴y=x﹣2a,∴CN=2a,∵EN=EH=a,∴CE=a,在Rt△DEF中,DE=2a,在Rt△DCE中,∴∴【点睛】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、等腰三角形的判定、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.24、(1)∠MAN的大小没有变化,理由见解析;(2);(3).【解析】

(1)由折叠知AD=AE、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,再证Rt△BAN≌Rt△EAN得∠BAN=∠EAN=∠BAE,根据∠MAN=∠EAM+∠EAN=(∠DAE+∠BAE)可得答案;(2)由题意知EN=BN=CN=1,设DM=EM=x,则MC=2-x、MN=1+x,在Rt△MNC中,由MC2+CN2=MN2列出关于x的方程求解可得;(3)将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,由旋转知DG=BQ=,AG=AQ,∠ADG=∠ABQ=∠ADB=45°,∠BAQ=∠DAG,证△GAH≌△QAH得GH=QH,设GH=QH=a,得BD=AB=2,BQ=,DQ=,DH=-a,在Rt△DGH中,由DG2+DH2=GH2可得关于a的方程,解之可得答案.【详解】(1)∠MAN的大小没有变化,∵将△ADM沿AM折叠得到△AME,∴△ADM≌△AEM,∴AD=AE=2、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,又∵AD=AB=2、∠D=∠B=90°,∴AE=AB、∠B=∠AEM=∠AEN=90°,在Rt△BAN和Rt△EAN中,∵,∴Rt△BAN≌Rt△EAN(HL),∴∠BAN=∠EAN=∠BAE,则∠MAN=∠EAM+∠EAN=∠DAE+∠BAE=(∠DAE+∠BAE)=∠BAD=45°,∴∠MAN的大小没有变化;(2)∵N点恰为BC中点,∴EN=BN=CN=1,设DM=EM=x,则MC=2﹣x,∴MN=ME+EN=1+x,在Rt△MNC中,由MC2+CN2=MN2可得(2﹣x)2+12=(1+x)2,解得:x=,即DM=;(3)如图,将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,则△ABQ≌△ADG,∴DG=BQ=、AG=AQ、∠ADG=∠ABQ=∠ADB=45°、∠BAQ=∠DAG,∵∠MAN=∠BAD=45°,∴∠BAQ+∠DAM=∠DAG+∠DAM=∠GAH=45°,则∠GAH=∠QAH,在△GAH和△QAH中,∵,∴△GAH≌△QAH(SAS),∴GH=QH,设GH=QH=a,∵BD=AB=2,BQ=,∴DQ=BD﹣BQ=,∴DH=﹣a,∵∠ADG=∠ADH=45°,∴∠GDH=90°,在Rt△DGH中,由DG2+DH2=GH2可得()2+(﹣a)2=a2,解得:a=,即QH=.【点睛】本题主要考查四边形的综合问题,解题的关键是熟练掌握正方形的性质、全等三角形的判定与性质及旋转的性质等知识点.25、(1);(2)能,;(3)详见解析.【解析】

(1)将A的坐标代入反比例解析式中求出k的值,确定出反比例解析式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论