2022年浙江省衢州市中考数学试卷_第1页
2022年浙江省衢州市中考数学试卷_第2页
2022年浙江省衢州市中考数学试卷_第3页
2022年浙江省衢州市中考数学试卷_第4页
2022年浙江省衢州市中考数学试卷_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年浙江省衢州市中考数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下列图形是中心对称图形的是()A. B. C. D.2.(3分)计算结果等于2的是()A.|﹣2| B.﹣|2| C.2﹣1 D.(﹣2)03.(3分)在平面直角坐标系中,点A(﹣1,﹣2)落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(3分)如图是某品牌运动服的S号,M号,L号,XL号的销售情况统计图,则厂家应生产最多的型号为()A.S号 B.M号 C.L号 D.XL号5.(3分)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.66.(3分)某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x克,1节7号电池的质量为y克,列方程组,由消元法可得x的值为()5号电池(节)7号电池(节)总质量(克)第一天2272第二天3296A.12 B.16 C.24 D.267.(3分)不等式组的解集是()A.x<3 B.无解 C.2<x<4 D.3<x<48.(3分)西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为()A.y=x B.y=x+1.6 C.y=2x+1.6 D.y=+1.69.(3分)如图,在△ABC中,AB=AC,∠B=36°.分别以点A,C为圆心,大于AC的长为半径画弧,两弧相交于点D,E,作直线DE分别交AC,BC于点F,G.以G为圆心,GC长为半径画弧,交BC于点H,连结AG,AH.则下列说法错误的是()A.AG=CG B.∠B=2∠HAB C.△CAH≌△BAG D.BG2=CG⋅CB10.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4 B.或﹣ C.﹣或4 D.﹣或4二、填空题(本题共有6小题,每小题4分,共24分)11.(4分)计算()2=.12.(4分)不透明袋子里装有仅颜色不同的4个白球和2个红球,从袋子中随机摸出一球,“摸出红球”的概率是.13.(4分)如图,AB切⊙O于点B,AO的延长线交⊙O于点C,连结BC.若∠A=40°,则∠C的度数为.14.(4分)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:(不必化简).15.(4分)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.16.(4分)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ=km.(2)k=.三、解答题(本题共有8小题,第17~19小题每题6分,第20~21小题每题8分,第22~23小题每题10分,第24小题12分,共66分.请务必写出解答过程)17.(6分)(1)因式分解:a2﹣1.(2)化简:+.18.(6分)已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.19.(6分)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.20.(8分)如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.(1)求证:CD∥AB.(2)若AB=4,∠ACD=30°,求阴影部分的面积.21.(8分)【新知学习】在气象学上,“入夏”由两种平均气温与22℃比较来判断:衢州市2021年5月5日~5月14日的两种平均气温统计表(单位:℃)2021年5月5日6日7日8日9日10日11日12日13日14日(日平均气温)20212221242625242527(五天滑动平均气温)……21.622.823.62424.825.4……注:“五天滑动平均气温”指某一天及其前后各两天的日平均气温的平均数,如:5月8日=(5月6日+5月7日+5月8日+5月9日+5月10日)=(21+22+21+24+26)=22.8(℃).已知2021年的从5月8日起首次连续五天大于或等于22℃,而5月8日对应着5月6日~5月10日,其中第一个大于或等于22℃的是5月7日,则5月7日即为我市2021年的“入夏日”.【新知应用】已知我市2022年的“入夏日”为图中的某一天,请根据信息解决问题:(1)求2022年的5月27日.(2)写出从哪天开始,图中的连续五天都大于或等于22℃.并判断今年的“入夏日”.(3)某媒体报道:“夏天姗姗来迟,衢州2022年的春天比去年长.”你认为这样的说法正确吗?为什么?(我市2021年和2022年的入春时间分别是2月1日和2月27日)22.(10分)金师傅近期准备换车,看中了价格相同的两款国产车.燃油车油箱容积:40升油价:9元/升续航里程:a千米每千米行驶费用:元新能源车电池电量:60千瓦时电价:0.6元/千瓦时续航里程:a千米每千米行驶费用:_____元(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)23.(10分)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.(1)求线段CE的函数表达式(写出x的取值范围).(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)24.(12分)如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结DE交BC于点F,BG平分∠CBE交DE于点G.(1)求证:∠DBG=90°.(2)若BD=6,DG=2GE.①求菱形ABCD的面积.②求tan∠BDE的值.(3)若BE=AB,当∠DAB的大小发生变化时(0°<∠DAB<180°),在AE上找一点T,使GT为定值,说明理由并求出ET的值.

2022年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下列图形是中心对称图形的是()A. B. C. D.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:B.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.(3分)计算结果等于2的是()A.|﹣2| B.﹣|2| C.2﹣1 D.(﹣2)0【分析】根据绝对值、负整数指数幂、零指数幂解决此题.【解答】解:A.根据绝对值的定义,|﹣2|=2,那么A符合题意.B.根据绝对值的定义,﹣|2|=﹣2,那么B不符合题意.C.根据负整数指数幂,,那么C不符合题意.D.根据零指数幂,(﹣2)0=1,那么D不符合题意.故选:A.【点评】本题主要考查绝对值、负整数指数幂、零指数幂,熟练掌握绝对值、负整数指数幂、零指数幂是解决本题的关键.3.(3分)在平面直角坐标系中,点A(﹣1,﹣2)落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据第三象限中点的坐标特征:横坐标为负数,纵坐标为负数,由此可确定A点位置.【解答】解:∵﹣1<0,﹣2<0,∴点A(﹣1,﹣2)在第三象限,故选:C.【点评】本题考查平面直角坐标系中点的坐标特征,熟练掌握平面直角坐标系中各象限点的坐标特点是解题的关键.4.(3分)如图是某品牌运动服的S号,M号,L号,XL号的销售情况统计图,则厂家应生产最多的型号为()A.S号 B.M号 C.L号 D.XL号【分析】利用四个型号的数量所占百分比解答即可【解答】解:∵32%>26%>24%>18%,∴厂家应生产最多的型号为M号.故选:B.【点评】本题考查了扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.(3分)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.6【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.【点评】本题考查的是三角形的三边关系定理,掌握三角形两边之和大于第三边,两边之差小于第三边是解题的关键.6.(3分)某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x克,1节7号电池的质量为y克,列方程组,由消元法可得x的值为()5号电池(节)7号电池(节)总质量(克)第一天2272第二天3296A.12 B.16 C.24 D.26【分析】根据题意可得2x+2y=72,3x+2y=96.,联立成二元一次方程组求解即可.【解答】解:由题意得:,解得,故选:C.【点评】此题考查二元一次方程组的实际运用,解题关键是弄清题意,找到合适的等量关系,列出方程组.7.(3分)不等式组的解集是()A.x<3 B.无解 C.2<x<4 D.3<x<4【分析】先解出每个不等式,再求公共解集即可.【解答】解:,解不等式①得x<4,解不等式②得x>3,∴不等式组的解集为3<x<4,故选:D.【点评】本题考查解不等式组,解题的关键是掌握求不等式公共解集的方法.8.(3分)西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为()A.y=x B.y=x+1.6 C.y=2x+1.6 D.y=+1.6【分析】根据题意和图形,可以得到AF=BG=xm,EF=EG﹣FG,FG=AB=1.6m,EG=ym,然后根据相似三角形的性质,可以得到y与x的函数关系式.【解答】解:由图2可得,AF=BG=xm,EF=EG﹣FG,FG=AB=1.6m,EG=ym,∴EF=(y﹣1.6)m,∵CD⊥AF,EF⊥AF,∴CD∥EF,∴△ADC∽△AFE,∴,即,∴,化简,得y=x+1.6,故选:B.【点评】本题考查一次函数的应用、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.9.(3分)如图,在△ABC中,AB=AC,∠B=36°.分别以点A,C为圆心,大于AC的长为半径画弧,两弧相交于点D,E,作直线DE分别交AC,BC于点F,G.以G为圆心,GC长为半径画弧,交BC于点H,连结AG,AH.则下列说法错误的是()A.AG=CG B.∠B=2∠HAB C.△CAH≌△BAG D.BG2=CG⋅CB【分析】根据基本作图得到DE垂直平分AC,GH=GC,再根据线段垂直平分线的性质得到AF=CF,GF⊥AC,GC=GA,于是可对A选项进行判断;通过证明FG为△ACH的中位线得到FG∥AH,所以AH⊥AC,则可计算出∠HAB=18°,则∠B=2∠HAB,于是可对B选项进行判断;计算出∠BAG=72°,∠AGB=72°,而△ACH为直角三角形,则根据全等三角形的判定方法可对C选项进行判断;通过证明△CAG∽△CBA,利用相似比得到CA2=CG•CB,然后利用AB=GB=AC可对D选项进行判断.【解答】解:由作法得DE垂直平分AC,GH=GC,∴AF=CF,GF⊥AC,GC=GA,所以A选项不符合题意;∵CG=GH,CF=AF,∴FG为△ACH的中位线,∴FG∥AH,∴AH⊥AC,∴∠CAH=90°,∵AB=AC,∴∠C=∠B=36°,∵∠BAC=180°﹣∠B﹣∠C=108°,∴∠HAB=108°﹣∠CAH=18°,∴∠B=2∠HAB,所以B选项不符合题意;∵GC=GA,∴∠GAC=∠C=36°,∴∠BAG=108°﹣∠GAC=72°,∠AGB=∠C+∠GAC=72°,∵△ACH为直角三角形,∴△CAH与△BAG不全等,所以C选项符合题意;∵∠GCA=∠ACB,∠CAG=∠B,∴△CAG∽△CBA,∴CG:CA=CA:CB,∴CA2=CG•CB,∵∠BAG=∠AGB=72°,∴AB=GB,而AB=AC,∴AC=GB,∴BG2=CG•CB,所以D选项不符合题意.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了全等三角形的判定、线段垂直平分线的性质和相似三角形的判定与性质.10.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4 B.或﹣ C.﹣或4 D.﹣或4【分析】分两种情况讨论:当a>0时,﹣a=﹣4,解得a=4;当a<0时,在﹣1≤x≤4,9a﹣a=﹣4,解得a=﹣.【解答】解:y=a(x﹣1)2﹣a的对称轴为直线x=1,顶点坐标为(1,﹣a),当a>0时,在﹣1≤x≤4,函数有最小值﹣a,∵y的最小值为﹣4,∴﹣a=﹣4,∴a=4;当a<0时,在﹣1≤x≤4,当x=4时,函数有最小值,∴9a﹣a=﹣4,解得a=﹣;综上所述:a的值为4或﹣,故选:D.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,根据二次函数的性质,在指定的范围内准确求出函数的最小值是解题的关键.二、填空题(本题共有6小题,每小题4分,共24分)11.(4分)计算()2=2.【分析】直接计算即可.【解答】解:原式=2.故答案是2.【点评】本题考查了二次根式的乘方.掌握乘方的含义是关键.12.(4分)不透明袋子里装有仅颜色不同的4个白球和2个红球,从袋子中随机摸出一球,“摸出红球”的概率是.【分析】用红色球的个数除以球的总个数即可.【解答】解:∵袋子中共有4+2=6个除颜色外其它都相同的球,其中红球有2个,∴从袋子中随机摸出一个小球,摸出的球是红球的概率是=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.(4分)如图,AB切⊙O于点B,AO的延长线交⊙O于点C,连结BC.若∠A=40°,则∠C的度数为25°.【分析】连接OB,先根据切线的性质求出∠AOB,再根据OB=OC,∠AOB=∠C+∠OBC即可解决问题.【解答】解:如图,连接OB.∵AB是⊙O切线,∴OB⊥AB,∴∠ABO=90°,∵∠A=40°,∴∠AOB=90°﹣∠A=50°,∵OC=OB,∴∠C=∠OBC,∵∠AOB=∠C+∠OBC,∴∠C=25°.故答案为:25°.【点评】本题考查切线的性质、等腰三角形的性质、直角三角形两锐角互余等知识,解题的关键是添加辅助线构造直角三角形.14.(4分)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:15x(10﹣x)=360(不必化简).【分析】根据题意表示出长方体的长与宽,进而表示出长方体的体积即可.【解答】解:由题意可得:长方体的高为:15cm,宽为:(20﹣2x)÷2(cm),则根据题意,列出关于x的方程为:15x(10﹣x)=360.故答案为:15x(10﹣x)=360.【点评】此题主要考查了有实际问题抽象出一元二次方程,正确表示出长方体的棱长是解题关键.15.(4分)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.【分析】作CM⊥AB于点M,DN⊥AB于点N,设C(m,),则OM=m,CM=,根据平行线分线段成比例求出DN,BN,OA,MN,再根据面积公式即可求出k的值.【解答】解:如图,作CM⊥AB于点M,DN⊥AB于点N,设C(m,),则OM=m,CM=,∵OE∥CM,AE=CE,∴==1,∴AO=m,∵DN∥CM,CD=2BD,∴===,∴DN=,∴D的纵坐标为,∴=,∴x=3m,即ON=3m,∴MN=2m,∴BN=m,∴AB=5m,∵S△ABC=6,∴5m•=6,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,平行线分线段成比例,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.(4分)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ=1.8km.(2)k=.【分析】(1)根据图中三条线段所标数据即可解答;(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.易得AZ=1.8,BZ=4=2.6,证明△BMQ∽△BZA,即可解答.【解答】解:(1)CD﹣EF﹣GJ=5.5﹣1﹣2.7=1.8(km);(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.由矩形性质得:AZ=CD﹣EF﹣GJ=1.8,BZ=DE+FG﹣CB﹣AJ=4.9+3.1﹣3﹣2.4=2.6,∵点P,A,B,Q共线,∴∠MBQ=∠ZBA,又∵∠BMQ=∠BZA=90°,∴△BMQ∽△BZA,∴=k===.故答案为:1.8;.【点评】本题重点考查矩形性质和相似三角形的判定和性质,解题关键是恰当作出辅助线.三、解答题(本题共有8小题,第17~19小题每题6分,第20~21小题每题8分,第22~23小题每题10分,第24小题12分,共66分.请务必写出解答过程)17.(6分)(1)因式分解:a2﹣1.(2)化简:+.【分析】(1)应用因式分解﹣运用公式法,平方差公式进行计算即可得出答案;(2)运算异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减,进行计算即可得出答案.【解答】解(1)a2﹣1=(a﹣1)(a+1);(2).【点评】本题主要考查了分式的加减法及因式分解﹣运用公式法,熟练掌握分式的加减法及因式分解﹣运用公式法的方法进行求解是解决本题的关键.18.(6分)已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.【点评】此题考查了全等三角形的判定与性质,利用ASA证明△ACB≌△ACD是解题的关键.19.(6分)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).【点评】本题考查作图﹣应用与设计作图,全等三角形的判定和性质,矩形的性质等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.20.(8分)如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.(1)求证:CD∥AB.(2)若AB=4,∠ACD=30°,求阴影部分的面积.【分析】(1)根据圆周角定理可得,∠ACD=∠DBA,由已知条件可得∠CAB=∠ACD,再根据平行线的判定方法即可得出答案;(2)连结OD,过点D作DE⊥AB,垂足为E.由∠ACD=30°,可得∠ACD=∠CAB=30°,根据圆周角定理可得∠AOD=∠COB=60°,即可得出∠COD=180°﹣∠AOD﹣∠COB=60°,∠BOD=180°﹣∠AOD=120°,即可算出S扇形BOD=的面积,在Rt△ODE中,根据三角函数可算出DE=cos30°OD的长度,即可算出S△BOD=的面积,根据S阴影=S扇形BOD﹣S△BOD代入计算即可得出答案.【解答】(1)证明:∵=,∴∠ACD=∠DBA,又∵∠CAB=∠DBA,∴∠CAB=∠ACD,∴CD∥AB.(2)如图,连结OD,过点D作DE⊥AB,垂足为E.∵∠ACD=30°,∴∠AOD=60°,∴∠BOD=180°﹣∠AOD=120°,∴S扇形BOD=.在Rt△ODE中,∵DE=sin60°•OD==,∴S△BOD===,∴S阴影=S扇形BOD﹣S△BOD=.∴S阴影=.【点评】本题主要考查了扇形面积的计算,平行线的性质与判定及圆周角定理,熟练掌握扇形面积的计算,平行线的性质与判定及圆周角定理进行求解是解决本题的关键.21.(8分)【新知学习】在气象学上,“入夏”由两种平均气温与22℃比较来判断:衢州市2021年5月5日~5月14日的两种平均气温统计表(单位:℃)2021年5月5日6日7日8日9日10日11日12日13日14日(日平均气温)20212221242625242527(五天滑动平均气温)……21.622.823.62424.825.4……注:“五天滑动平均气温”指某一天及其前后各两天的日平均气温的平均数,如:5月8日=(5月6日+5月7日+5月8日+5月9日+5月10日)=(21+22+21+24+26)=22.8(℃).已知2021年的从5月8日起首次连续五天大于或等于22℃,而5月8日对应着5月6日~5月10日,其中第一个大于或等于22℃的是5月7日,则5月7日即为我市2021年的“入夏日”.【新知应用】已知我市2022年的“入夏日”为图中的某一天,请根据信息解决问题:(1)求2022年的5月27日.(2)写出从哪天开始,图中的连续五天都大于或等于22℃.并判断今年的“入夏日”.(3)某媒体报道:“夏天姗姗来迟,衢州2022年的春天比去年长.”你认为这样的说法正确吗?为什么?(我市2021年和2022年的入春时间分别是2月1日和2月27日)【分析】(1)根据算术平均数的定义解答即可;(2)根据统计图数据解答即可;(3)根据统计图数据解答即可.【解答】解(1)(℃);(2)从5月27日开始,连续五天都大于或等于22℃,我市2022年的“入夏日”为5月25日;(3)不正确.因为今年的入夏时间虽然比去年迟了18天,但是今年的入春时间比去年迟了26天,所以今年的春天应该比去年还短.【点评】本题考查了算术平均数,掌握算术平均数的计算方法解答的关键.22.(10分)金师傅近期准备换车,看中了价格相同的两款国产车.燃油车油箱容积:40升油价:9元/升续航里程:a千米每千米行驶费用:元新能源车电池电量:60千瓦时电价:0.6元/千瓦时续航里程:a千米每千米行驶费用:_____元(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)【分析】(1)根据表中的信息,可以计算出新能源车的每千米行驶费用;(2)①根据燃油车的每千米行驶费用比新能源车多0.54元和表中的信息,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;②根据题意,可以列出相应的不等式,然后求解即可.【解答】解:(1)由表格可得,新能源车的每千米行驶费用为:=(元),即新能源车的每千米行驶费用为元;(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,∴﹣=0.54,解得a=600,经检验,a=600是原分式方程的解,∴=0.6,=0.06,答:燃油车的每千米行驶费用为0.6元,新能源车的每千米行驶费用为0.06元;②设每年行驶里程为xkm,由题意得:0.6x+4800>0.06x+7500,解得x>5000,答:当每年行驶里程大于5000km时,买新能源车的年费用更低.【点评】本题考查分式方程的应用、一元一次不等式的应用、列代数式,解答本题的关键是明确题意,列出相应的分式方程和不等式.23.(10分)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.(1)求线段CE的函数表达式(写出x的取值范围).(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)【分析】(1)由图2可知:C(8,16),E(40,0),利用待定系数法可得出结论;(2)当时,,联立,可得出点P的横坐标,比较即可得出结论;(3)①猜想a与v2成反比例函数关系.将(100,0.250)代入表达式,求出m的值即可.将(150,0.167)代入进行验证即可得出结论;②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,比较即可.【解答】解:(1)由图2可知:C(8,16),E(40,0),设CE:y=kx+b(k≠0),将C(8,16),E(40,0)代入得:,解得,∴线段CE的函数表达式为(8≤x≤40).(2)当时,,由题意得,解得x1=0(舍去),x2=22.5.∴P的横坐标为22.5.∵22.5<32,∴成绩未达标.(3)①猜想a与v2成反比例函数关系.∴设,将(100,0.250)代入得,解得m=25,∴.将(150,0.167)代入验证:,∴能相当精确地反映a与v2的关系,即为所求的函数表达式.②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,又∵v>0,∴.∴当v≈18m/s时,运动员的成绩恰能达标.【点评】本题属于函数综合应用,涉及待定系数法求函数解析式,反比例函数的应用及二次函数综合应用,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论