版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArtificialIntelligence
March2018
WhatisAI?WhatisMachineLearning?WhatisCognitiveAnalytics?Howdothesetermsrelate,ordiffer,fromoneanother?Ingeneralterms,AIreferstoabroadfieldofscienceencompassingnotonlycomputersciencebutalsopsychology,philosophy,linguisticsandotherareas.
ArtificialIntelligence|Contents
Contents
ArtificialIntelligenceDefined 04
ArtificialIntelligenceTechniquesExplained 10
ApplicationsofAI 16
Fivetechnologytrendsthatleap-frog
ArtificialIntelligence 22
AIopportunitiesforthefuture 26
Authors 31
Sources 32
03
04
ArtificialIntelligence|ArtificialIntelligencedefined
ArtificialIntelligence|ArtificialIntelligencedefined
ArtificialIntelligence|ArtificialIntelligencedefined
05
06
ArtificialIntelligencedefined
ThetopicofArtificialIntelligenceisatthetopofitsHypecurve1.Andtherearemanygoodreasonsforthat;itisexciting,promisingandabitscaryatthesametime.VariouspublicationsareclaimingthatAIknowswhatwewanttobuy,itcancreateNetflixseries,itcouldcurecanceranditmayeventuallytakeourjobsorevendestroymankind.2
TheproblemandatthesametimeopportunitywithAIisthatit’snotverywelldefined.Ifwewouldshowthenavigationsystemofourcartosomeonelivingin1980,heorshewouldprobablyconsideritasaformofArtificialIntelligence,whereaswenowadayswouldprobablynot.Weareseeingthesamewithspeechandimagerecognition,naturallanguagerecognition,gameenginesandothertechnologiesthatarebecomingmoreandmorecommonandembeddedinevery-daytechnology.
Ontheotherhand,varioustechnologysolutionprovidersaretakingtheopportunitytorebrandtheirexistingsolutionstoAI,totakeadvantageofthehugehypeandthatthemarketisexperiencingandtheresultingpresscoverage.Ifwehaveabuiltamachinelearningmodelthatpredictscustomer
demand,asolutionthathasbeenexistingforyears,wewouldhavecalledit“datamining”inthepastandwenowseeitrebrandedas“artificialintelligence”.Thisisaddingtotheconfusionandmayverywellleadtoinflatedexpectations.
Nevertheless,recentdevelopmentsinAIareimpressiveandexciting.Butalsooverestimatedandmisunderstood.Inordertosplithypefromrealityandhelpformingaviewonthismarket,wewillpublishaseriesofarticlesexplainingthe
worldofAI,zoomingintothetechniquesthatareassociatedwithAI,themostappealingbusinessapplicationsandpotentialissueswecanexpect.
Inthisfirstarticlewewillstartwiththebeginning,byexplainingAIandassociatedtermsinfivedefinitions.WhatisAI?WhatisMachineLearning?WhatisCognitiveAnalytics?Howdothesetermsrelate,ordiffer,fromoneanother?.
ArtificialIntelligence(AI)
Ingeneralterms,AIreferstoabroadfieldofscienceencompassingnotonlycomputersciencebutalsopsychology,philosophy,linguisticsandotherareas.AIisconcernedwithgettingcomputerstodotasksthatwouldnormallyrequire
humanintelligence.Havingsaidthat,therearemanypointofviewsonAIandmanydefinitionsexist.BelowsomeAIdefinitionswhichhighlightkeycharacteristicsofAI.
“AIreferstoabroadfieldofscienceencompassingnotonlycomputersciencebutalsopsychology,philosophy,linguisticsandotherareas”
1
/document/3380751/
2
/news/technology-37713629
/ai-open-letter/
BIGDATA
Capableofprocessingmassiveamountsofstructuredandunstructureddatawhichcanchangeconstantly
REASONING
Abilitytoreason(deductiveorinductive)andtodrawinferencebasedtothesituation.Contextdrivenawarenessofthesystem.
Abilitytolearnbasedonhistoricalpatterns,expertinputandfeedbackloop
LEARNING
Capableofanalyzingandsolvingcomplexproblemsinspecial-purposeandgeneral-purposedomain
PROBLEMSOLVING
Figure1:KeycharacteristicsofanAIsystem
Somegeneraldefinitions:
“Artificialintelligenceisacomputerizedsystemthatexhibitsbehaviorthat
iscommonlythoughtofasrequiringintelligence.”3
“ArtificialIntelligenceisthescienceofmakingmachinesdothingsthatwouldrequireintelligenceifdonebyman.”4
ThefoundingfatherofAIAlanTuringdefinesthisdisciplineas:
“AIisthescienceandengineeringofmakingintelligentmachines,especiallyintelligentcomputerprograms”.5
Inallthesedefinitions,theconceptofintelligencereferstotheabilitytoplan,reasonandlearn,sensingandbuildingsomekindofperceptionofknowledgeandcommunicateinnaturallanguage.
NarrowAIvsGeneralAI
Achesscomputercouldbeatahumaninplayingchess,butitcouldn’tsolvea
complexmathproblem.VirtuallyallcurrentAIis“narrow”,meaningitcanonlydowhatitisdesignedfor.Thismeansforeveryproblem,aspecificalgorithmneedstobedesignedtosolveit.NarrowAIaremostlymuchbetteratthetasktheyweremadeforthanhumans,likefacerecognition,chesscomputers,calculus,translation.TheholygrailofAIisaGeneralAI,asinglesystemthatcanlearnaboutanyproblemandthensolveit.Thisisexactlywhathumansdo:
wecanspecializeinaspecifictopic,fromabstractmathstopsychologyandfromsportstoart,wecanbecomeexpertsatallofthem.
AnAIsystemcombinesandutilizesmainlymachinelearningandothertypesofdataanalyticsmethodstoachieveartificialintelligencecapabilities.
3PreparingfortheFutureofArtificialIntelligence,NSTC,2016
46.Raphael,B.1976.Thethinkingcomputer.SanFrancisco,CA:W.H.Freeman
5
/jmc/whatisai/node1.html
ArtificialIntelligence|ArtificialIntelligencedefined
ArtificialIntelligence|ArtificialIntelligencedefined
07
08
ArtificialIntelligence
Abilitytosense,reason,engageandlearn
Computervision Robotics&motion
Naturallanguage
processing MachineLearning
Abilitytolearn
Voice
Planning&optimization
Knowledge
recognitionSupervised
learning
Unsupervisedlearning
Reinforcementcapture
MethodsAbilitytoreasonRegressionDecisiontreesetc.
learning
TechnologiesPhysicalenablementPlatform
UXAPIs
Sensorsetc.
Figure2:relationbetweenAI,MachineLearningandunderlyingmethodsandinfrastructure
MachineLearning
Machinelearningistheprocesswherebyacomputerdistillsmeaningbyexposuretotrainingdata6.Ifforexampleyouwantanalgorithmtoidentifyspamine-mails,youwillhavetotrainthealgorithmbyexposingittomanyexamplesofe-mails
thataremanuallylabeledasbeingspamornot-spam.Thealgorithm“learns”toidentifypatterns,likeoccurrenceofcertainwordsorcombinationofwords,thatdeterminesthechanceofane-mailbeingspam.
Machinelearningcanbeappliedtomanydifferentproblemsanddatasets.Youcantrainanalgorithmtoidentifypicturesofcatsinphoto-collections,potentialfraudcasesininsuranceclaims,transformhandwritingintostructuredtext,transformspeechintotextetc.Alltheseexampleswouldrequirelabeledtrainingsets.
Dependingonthetechniqueused,analgorithmcanimproveitselfbyaddingafeedbackloopthattellsitinwhichcasesitmademistakes.
ThedifferencewithAIhoweveristhatamachinelearningalgorithmwillnever
“understand”whatitwastrainedtodo.Itmaybeabletoidentifyspam,butitwillnotknowwhatspamisorunderstandwhywewantittobeidentified.Andifthereisanewsortofspamemerging,itwillprobablynotbeabletoidentifyitunlesssomeone(human)re-trainsthealgorithm.
MachinelearningisatthebasisofmostAIsystems.Butwhileamachinelearningsystemmaylook“smart”,inourdefinitionofAIitisinfactnot.
CognitiveAnalytics
CognitiveAnalyticsisasubsetofA.I.thatdealswithcognitivebehaviorweassociatewith‘thinking’asopposedtoperceptionandmotorcontrol.Thinking
allowsanentitytoobtaininformationfromobservations,learnandcommunicate.
Acognitivesystemiscapableofextractinginformationfromunstructureddatabyextractingconceptsandrelationshipsintoaknowledgebase.Forexample,fromatextaboutBarackObama,therelationsfromFigure3canbeextractedusingNaturalLanguageProcessing.80%ofallcompanydataisunstructuredandcurrentCognitiveAnalyticssystemscansearchallofittofindtheanswertoyourquestion.
6StephenLucci,2016,
Artificialintelligenceinthe21stcentury:Alivingintroduction
Mexico
Neighbour
USA
President
BarackObama
Spouse
Father
MichelleObama
Father
Mother
Mother
MaliaObama
Sibbling
SashaObama
Figure3:Aknowledgebaseextractedfromtext
LearningenablestheCognitiveSystemtoimproveovertimeintwomajorways.
Firstly,byinteractingwithhumans,andobtainingfeedbackfromtheconversationpartnerorbyobservingtwointeractinghumans.Secondly,fromallthedataintheknowledgebase,newknowledgecanbeobtainedusinginference.
AnotherimportantaspectofCognitiveAnalyticsistheabilitytousecontext.ContextenablesaCognitiveAnalyticssystemtoinfermeaningfromlanguage.Forexample,achatbotcantakeintoaccounttheconversationhistorytoinferwhoisreferredtobythewordhe:
User:
AI:
User:
AI:
WhoisObama’swife?MichelleObama.
Howoldishe?
BarackObamais55yearsold.
Figure4:Exampleconversationofacognitivesystem
ArtificialIntelligence|ArtificialIntelligencedefined
10
/amelia/
09
Forthissimpleexercise,thesystemneedstobeawareofnamesthatrepresentpeople,relationshipsbetweenpeople,genderandthecommonsensetoinferthatObamareferstoBarackObama.Allofthiscontextualinformationisrequiredtomaketherightinferencestoanswerbothquestions.
SinceCognitiveSystemsareawareofcontext,canunderstandunstructureddataandreasonaboutinformation,theycancommunicatewithhumansaswell.ThisenablesthesystemtounderstandaquestionposedinEnglish,nolongerrequiringthetime-consumingprocessof
convertingthequestionintoaformatthecomputercanworkwith.Forexample,
acallcenterrepresentativecognitivesystemcanquicklyansweracustomer’squestionaboutcampinggearbyusinginformationfromproductdescriptions,customerreviews,saleshistories,topicalblogs,andtravelmagazines.7CognitiveSystemscanunderstandandcommunicatethroughmanymediums,includingspeech,image,video,signlanguage,graphsoranycombinationofthese.
Robotics
AIisanimportantenablingfactorindesignandoperationalizingsmartrobotsandotherprocessautomationapplications.
Initsmostsimpleform,arobotmaybeamachinethatisprogrammedtoperformasimpletask,byfollowingstep-by-step
instructions.Itcouldconsistofarule-basedenginethatexplicitelytellsthesystemwhattodowhenacertainconditionoccurs.ArobotinacarfactoryIsprogrammedlikethatandhardlyconsidered“intelligent”.
Butroboticsexistinavarietyofmuchmoreintelligentshapes,rangingfromunmannedautonomousvehicles(UAV’s),drones,smartvacuumcleanerstointelligentchatbotsandsmartassistantsetc.Howadvancedrobots
areisvividifwelookatrobotsdevelopedbyBostonDynamics8andMIT’sCheetahII9.OtherexampleisAmelia10,anintelligentassistantwithNLPcapabilities.Keyaspectofroboticsisthatitcombineshardware(mechanicalparts,sensors,screensetc.)withintelligentsoftwareanddatatoperformataskforwhichcertainlevelofintelligenceisrequired(e.g.orientation,motion,interactionetc.).
SmartMachines
Themajorthemeinusingtheterm“SmartMachines”isautonomy.SmartMachinesaresystemsthat–tosomeextend-areabletomakedecisionsbythemselves,requiringnohumaninput.CognitiveAnalyticssystemscanbeSmartMachines,aswell
asrobots,oranykindofAI,aslongasitadherestothisrule.Inthecaseofarobot,autonomycouldconsistsofacapabilitytoplanwhereitwantstogo,whatitwantstoachieveandhowtoovercomeobstacles.Ratherthanbeinghuman-controlledorsimplyfollowinginstructions,itcouldachievehigher-levelgoalslikegettinggroceries,inspectingbuildingsandsoforth.Thisisenabledbyplanningmethods,self-preservationinstinctsontopoftheskillsthatanormalrobotalreadyrequires.
InthecaseofaCognitiveSystem,itwillpro-activelytrytolearnnewfacts,gaugeopinionsandlearnnewcommonsenserulesbyengaginginactiveconversationwithhumans,askingquestionsanddouble-checkingthemwithdatafoundonline.Itwillalsoactivelyinformdecisionmakersaboutchangesithasobserved,forexampleiftheopinionofcustomersonsocialmediasuddenlymakesaswing.Itcouldevenactuponthesechanges,intheexampleengagingwiththecustomersorsharingthepositiveopinionsonthesocialmediaoutletsofthecompany.
SinceSmartMachinesareautonomousandintelligent,theymightstartcommunicatingamongthemselves.Thisleadstomulti-agentsystemsthatcanmaketrades
toimprovetheirutility.Thebuilding-inspectingrobotcanaskadronetoinspecttheroofforhim,tradingthisfavorforanotherfavor,liketransportinggoodsorsimplycurrency.
ACognitiveSystemthatbecomesaSmartMachinecanspecializeinaspecificarea,becominganexpertinthatarea.Now,otherSmartMachinescanaskitforinformationinthatarea,anditwillbeabletoprovidemorerelevantanswersmorequicklythanageneralCognitiveSystemthatisnotspecialized.InformationbrokerslikethisimprovetheoverallutilityofthewholenetworkofSmartMachines.
Conclusion
ThetermsMachineLearning,Cognitive,RoboticsandsmartmachinesareusedofteninrelationshiptoAI,orsometimesevenassynonyms.AIisacomplexfieldofinterest,withmanyshapesandforms.Thereforewehavetriedtoshinesomelightonthemostusedterminology.Insubsequentblogs,wewilldivedeeperintechniquesbehindAIsystems,business
applications,someassociatedtechnologytrendsandthetop5risksandconcerns.
7
Deloitte,Cognitiveanalytics™Thethree-minuteguide
8
/
9/research/dynamic-locomotion-mit-cheetah-2
10
ArtificialIntelligence|ArtificialIntelligencetechniquesexplained
ArtificialIntelligence|ArtificialIntelligencetechniquesexplained
ArtificialIntelligence|ArtificialIntelligencetechniquesexplained
PAGE
11
4/wiki/Support_vector_machine
12
ArtificialIntelligencetechniquesexplained
Inorderto‘demystify’ArtificialIntelligence,andinsomewaygetmorepeopleinvolvedinAI,wearepublishingaseriesofarticlesexplainingtheworldofAI,zoominginonthetechniquesthatareassociatedwithAI,themostappealingbusinessapplications,andpotentialissueswecanexpect.
The
firstblog
articleexplainedsomeofthemostcommonlyuseddefinitionsofAI.InthissecondarticlewewillexplainsomefundamentalAItechniquesused:Heuristics,SupportVectorMachines,
NeuralNetworks,MarkovDecisionProcess,andNaturalLanguageProcessing.
Heuristics
Supposewehavecoinswiththefollowingdenominations:5cents,4cents,3cents,and1centandweneedtodeterminetheminimumnumberofcoinstoget7cents.Inordertosolvethisproblemwecanmakeuseofatechniquecalled“heuristics”.
Webster1definesthetermHeuristicas“involvingorservingasanaidto
learning,discovery,orproblem-solvingbyexperimentalandespeciallytrialanderrormethods”.Inpractice,thismeansthatwheneverproblemsgettoolargeortoocomplextofindtheguaranteedbestpossiblesolutionusingexactmethods,heuristicsareawaytoemployapracticalmethodtofindasolutionthatisnotguaranteedtobeoptimal,butonethatissufficientfortheimmediategoals.
Forsomeproblems,tailoredheuristicscanbedesignedthatexploitthestructurepresentintheproblem.Anexampleofsuchatailoredheuristicwouldbeagreedyheuristicfortheabovementionedcoin-
changingproblem.Nowagreedyheuristicwouldbetoalwayschoosethelargestdenominationpossibleandrepeatthisuntilwegettothedesiredvalueof7.Inourexample,thatmeansthatwewouldstartwithfirstselectingone5centcoin.Fortheremaining2cents,thelargestdenominationwecanchooseis1cent,leavinguswiththesituationwherewestillhavetocover1centforwhichweagainuse1cent.
Soourgreedyheuristicgivesusasolutionof3coins(5,1,1)togettothevalueof
7cents.Itcanbeeasilyseenthatanother,better,solutionofonly2coinsexistusingthe3and4centcoins.Whilethegreedyheuristicforthecoinchangingproblemdoesnotprovidethebestsolutionforthisparticularcase,inmostcasesitwillresultinasolutionthatisacceptable.
Besidessuchtailoredheuristicsforspecificproblems,alsocertaingenericheuristicsexist.Justlikeneuralnetworks,someofthesegenericheuristicsarebasedonprocessesinnature.Twoexamplesof
suchgenericheuristicsareAntColonyOptimization2andgeneticalgorithms3.Thefirstisbasedonhowsimpleantsareabletoworktogethertosolvecomplexproblemsandthelatterisbasedontheprincipleofsurvivalofthefittest.
1
/dictionary/heuristic
2/wiki/Ant_colony_optimization_algorithms
3/wiki/Genetic_algorithm
Figure1
1
3
2
Figure3 Figure2
Atypicalproblemwhereheuristicsareappliedtofindacceptablesolutionsquicklyisvehiclerouting,wheretheobjectiveistofindroutesforoneormorevehiclesthathavetovisitanumberoflocations.
SupportVectorMachines
Thequestionwhetheranemailisspamornotspamisanexampleofaclassificationproblem.Inthesetypesofproblems,theobjectiveistodeterminewhetheragivendatapointbelongstoacertainclassornot.Afterfirsttrainingaclassifiermodelondatapointsforwhichtheclassisknown(e.g.
asetofe-mailsthatarelabeledasspamornotspam),youcanthenusethemodeltodeterminetheclassofnew,unseendata-points.ApowerfultechniqueforthesetypesofproblemsisSupportVectorMachines4(SVM).
ThemainideabehindSVMisthatyoutrytofindtheboundarylinethatseparatesthetwoclasses,butinsuchawaythat
theboundarylinecreatesamaximumseparationbetweentheclasses.Todemonstratethis,wewillusethefollowingsimpledataforourclassificationproblem(Figure1).
Inthisexample,thegreencirclesandtheredsquarescouldrepresenttwodifferentsegmentsinatotalsetofcustomers(e.g.highpotentialandlowpotential),basedonallkindsofpropertiesforeachofthecustomers.Anylinethatkeepsthegreencirclesontheleftandtheredsquaresontherightisconsideredavalidboundarylinefortheclassificationproblem.Thereisaninfinitenumberofsuchlinesthatcanbedrawnand4differentexamplesarepresentedontop(Figure2).
Asstatedbefore,withSVMyoutrytofindtheboundarylinethatmaximizestheseparationbetweenthetwoclasses.Intheprovidedexample,thiscanbedrawnasFigure3:
Thetwodottedlinesarethetwoparallelseparationlineswiththelargestspacebetweenthem.Theactualclassificationboundarythatisusedwillbethesolidlineexactlyinthemiddleofthetwodottedlines.
ThenameSupportVectorMachinecomesfromthedatapointsdirectlyoneitheroftheselinesarethesupportingvectors.Inourexample,wehad3supportingvectors.
Ifanyoftheotherdatapoints(i.e.notasupportingvector)ismovedslightly,thedottedboundarylinesarenotaffected.However,ifthepositionofanyofthesupportingvectorsisslightlychanged(e.g.datapoint1ismovedslightlytotheleft),thepositionofthedottedboundarylineswillchangeandthereforethepositionofthesolidclassificationlinealsochanges.
Biologicalneuron
Artificialneuron
X1
X2
Output
X3
Inreallife,dataisnotasstraightforwardasinthissimplifiedexample.Wenormallyworkwithmuchmorethantwodimensions.Besideshavingstraightseparationlines,theunderlyingmathematicsforanSVMalsoallowsfor
certaintypeofcalculationsorkernelsthatresultinboundarylinesthatarenon-linear.
SVMclassificationmodelscanalsobefoundinimagerecognition,likefacerecognitionorconvertinghandwritingtotext.
Figure4:Graphicalrepresentationofabiologicalneuron(left)andanartificialneuron(right)
ArtificialNeuralNetworks
Animalsareabletoprocess(visualorother)informationfromtheirenvironmentandreactadaptivelytoachangingsituation.
Theyusetheirnervoussystemtoperformsuchbehavior.Theirnervoussystemcanbemodeledandsimulatedanditshouldbepossibleto(re)producesimilarbehaviorinartificialsystems.ArtificialNeuralNetworks(ANN)canbedescribedasprocessingdevicesthatarelooselymodeledaftertheneuralstructureofabrain.Thebiggestdifferencebetweenthetwoisthatthe
ANNmighthavehundredsorthousandsneurons,whereastheneuralstructureofananimalorhumanbrainhasbillions.
Thebasicprincipleofaneuralstructureisthateachneuronisconnectedwith
acertainstrengthtootherneurons.Basedontheinputstakenfromtheoutputofotherneurons(alsoconsideringtheconnectionstrength)anoutputisgeneratedwhichcanbeusedasinputagainbyotherneurons,seeFigure1(left).Thisbasicideahasbeentranslatedintoanartificialneuralnetworkbyusingweightstoindicatethestrengthoftheconnectionbetweenneurons.Furthermore,eachneuronwilltaketheoutputfromtheconnectedneuronsasinputanduseamathematicalfunctiontodetermineitsoutput.Thisoutputisthenusedbyotherneuronsagain.
Whereinthebiologicalbrainlearningtakesplacebystrengtheningorweakeningthebondsbetweendifferentneurons,intheANNthelearningtakesplacebychangingtheweightsbetweentheneurons.Byprovidingtheneuralnetworkwithalargesetoftrainingdatawithknownfeaturesthebestweightsbetweentheartificialneurons(i.e.strengthofthebond)canbecalculatedinordertomakesuretheneuralnetworkbestrecognizesthefeatures.
Hiddenlayers
Inputlayer
Outputlayer
TheneuronsoftheANNcanbestructuredintoseverallayers5.Figure5showsanillustrativeschemeofsuchlayering.Thisnetworkconsistsofaninputlayer,where
Figure5:SchematicofaconnectedANN
alltheinputsarereceived,processedandconvertedtooutputstothenextlayers.Thehiddenlayersconsistofoneormorelayersofneuronseachpassingthroughinputsandoutputs.Finally,theoutputlayerreceivesinputsofthelasthiddenlayerandconvertsthistotheoutputfortheuser.
Figure2showsanexamplenetworkwhereallneuronsinonelayerareconnected
toallneuronsinthenextlayer.Suchanetworkiscalledfullyconnected.Dependingonthetypeofproblemyouwanttosolvedifferentconnectionpatternsareavailable.Forimagerecognitionpurposes,typically
5
/chap1.html
ArtificialIntelligence|ArtificialIntelligencetechniquesexplained
ArtificialIntelligence|ArtificialIntelligencetechniquesexplained
6
/~vardi/dag01/givan1.pdf
7
/html/ArtInt_224.html
14
8MoreonRNN:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
15
Convolutionalnetworksareused,whereonlygroupsofneuronsfromonelayerare
connectedtogroupsofneuronsinthenextlayer.Forspeechrecognitionpurposes,typicallyRecurrentnetworksareused,whichallowforloopsfromneuronsinalaterlayerbacktoanearlierlayer.
MarkovDecisionProcess
AMarkovDecisionProcess(MDP)isaframeworkfordecision-makingmodelingwhereinsomesituationstheoutcome
ispartlyrandomandpartlybasedontheinputofthedecisionmaker.Another
applicationwhereMDPisusedisplanning,wheretheplanningisoptimized.The
basicgoalofMDPistofindapolicyforthedecisionmaker,tellshimwhichparticularactionshouldbetakenatwhichstate.
AnMDPmodelconsistsofthefollowingparts6:
Asetofpossiblestates:forexample,thiscanrefertoagridworldofarobotorthestatesofadoor,dooropenanddoorclosed.
Asetofpossibleactions:afixedsetofactionsarobotforexamplecantake,suchasgoingnorth,left,southorwest.Orwithrespecttoadoor,closingoropeningdoor.
Transitionprobabilities:thisistheprobabilityofgoingfromonestatetoanotherstate.Forexample,whatistheprobabilitythatthedoorisclosed,aftertheactionofclosingthedoor
isperformed.
Rewards:theseareusedtoguidetheplanning.Withrespecttotherobotandthegridexample,arobotmaywanttomovenorthtoreachitsdestination.Actuallygoingnorthwillresultinahigherreward.
OncetheMDPisdefined,apolicycanbetrainedusing“Valueiteration”or“PolicyIteration”.Thesemethodscalculatetheexpectedrewardsforeachofthestates.Thepolicythengivesthebestactionthatcanbetakenfromeachstate.
Asanexample,wewilldefineagridwhichcanbeseenasanideal,finiteworldfor
arobot7.ThisexamplegridisshowninFigure6.
Therobotcanmove(action)fromeachpositioninthegrid(state)infourdirections,namelynorth,left,rightandsouth.Theprobabilitythattherobotgoesintothedesireddirectionis0.7and0.1ifitgoestowardsanyoftheother3directions.Arewardof-1(i.e.apenalty)isgiveniftherobotbumpsintoawallanddoesn’tmove.Also,additionalrewardsandpenaltiesaregiveniftherobotreachesthecellsthatarecoloredgreenandred,respectively.Basedontheprobabilitiesandrewardsapolicy(function)canbemadeusingtheinitialandfinalstate.
AnotherexamplewhereMDPcanbeusedistheinventoryplanningproblem,whereastockkeeperormanagereachweekhastodecidehowmanyunitshavetobeordered.TheinventoryplanningcanbemodeledasanMDP,wherethestatescanbeconsideredpositiveinventoryand
shortages.Possibleactionsareforinstanceorderingnewunitsorbackloggingtothenextweek.Transitionprobabilitiescanbeconsideredastheactionthatwillbetakenbasedonthedemandandinventoryforthecurrentweek.Rewards,orinthiscase,costsaretypicallyunitordercostsandinventorycosts.
+3
-3
-10
+10
-1
-1
-1
-1
Figure6:Example–gridworldofarobot
NaturalLanguageProcessing
NaturalLanguageProcessing,orNLPinshort,isatermforeverythingfromspeechrecognitiontolanguagegeneration,eachrequiringdifferenttechniques.Afewoftheimportanttechniqueswillbeexplainedbelow,whicharePart-of-Speechtagging,NamedEntityRecognition,andParsing.
Letusexaminethesentence“Johnhit
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国弹性座密封闸阀数据监测研究报告
- 2025至2030年中国大型抛丸清理线数据监测研究报告
- 二零二五年度古装剧编剧聘请合同示范文本3篇
- 二零二五年度城市历史文化保护与推广合同4篇
- 二零二五年度住宅窗户安装与节能改造一体化合同3篇
- 临时工聘用合同:2024年事业单位专用版B版
- 二零二五年度出租车经营权转让及运营管理合同4篇
- 二零二五年大厦股权抵押合同变更协议4篇
- 二零二五年度高校外教汉语教学与推广合同4篇
- 2025版宿舍楼租赁合同(包含水电费结算)3篇
- 寒潮雨雪应急预案范文(2篇)
- 垃圾车驾驶员聘用合同
- 2024年大宗贸易合作共赢协议书模板
- 变压器搬迁施工方案
- 单位转账个人合同模板
- 八年级语文下册 成语故事 第十五课 讳疾忌医 第六课时 口语交际教案 新教版(汉语)
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
- EPC项目采购阶段质量保证措施
- T-NAHIEM 101-2023 急诊科建设与设备配置标准
- 四川2024年专业技术人员公需科目“数字经济与驱动发展”参考答案(通用版)
- 煤炭装卸服务合同
评论
0/150
提交评论