2024年黑龙江省海伦市八年级数学第二学期期末教学质量检测试题含解析_第1页
2024年黑龙江省海伦市八年级数学第二学期期末教学质量检测试题含解析_第2页
2024年黑龙江省海伦市八年级数学第二学期期末教学质量检测试题含解析_第3页
2024年黑龙江省海伦市八年级数学第二学期期末教学质量检测试题含解析_第4页
2024年黑龙江省海伦市八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年黑龙江省海伦市八年级数学第二学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在矩形中,边的长为,点分别在上,连结,若四边形是菱形,且,则边的长为()A. B. C. D.2.下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例 B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例 D.在y=x+3中y与x成正比例3.如果成立,那么实数a的取值范围是()A. B. C. D.4.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2 B.4 C.8 D.45.如图,正方形中,,是的中点,是上的一动点,则的最小值是()A.2 B.4 C. D.6.当a<0,b<0时,-a+2-b可变形为()A. B.- C. D.7.对于数据:80,88,85,85,83,83,1.下列说法中错误的有()①这组数据的平均数是1;②这组数据的众数是85;③这组数据的中位数是1;④这组数据的方差是2.A.1个 B.2个 C.3个 D.4个8.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠ABC=75°,则∠EAF的度数为()A.60° B.65° C.70° D.75°9.如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B

恰好碰到地面,经测量AB=2,则树高为()米.A.1+ B.1+ C.2-1 D.310.如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为().A.17 B.16 C.15 D.14二、填空题(每小题3分,共24分)11.函数中自变量x的取值范围是.12.如图,在中,,平分,点为中点,则_____.13.方程的解是__________.14.如图,F是△ABC内一点,BF平分∠ABC且AF⊥BF,E是AC中点,AB=6,BC=8,则EF的长等于____.15.在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.16.若分式的值是0,则x的值为________.17.当__________时,分式的值等于零.18.已知,那么的值为__________.三、解答题(共66分)19.(10分)用适当的方法解下列方程:(2x-1)(x+3)=1.20.(6分)因式分解:am2﹣6ma+9a.21.(6分)计算:(2018+2018)(-)22.(8分)(1)计算(2)解不等式组,并写出不等式组的非负整数解。(3)解分式方程:23.(8分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:运往地

车型

甲地(元/辆)

乙地(元/辆)

大货车

720

800

小货车

500

650

(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.24.(8分)如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.25.(10分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:投进个数10个8个6个4个人数1个5人1人1人(1)请计算甲组平均每人投进个数;(1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?26.(10分)已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据菱形的性质得出,,,再根据矩形的性质以及全等三角形的性质得出,,继而推出答案.【详解】解:四边形为菱形,,四边形为矩形又.故选:C.【点睛】本题考查的知识点有菱形的性质、矩形的性质、全等三角形的判定及性质、含30度角的直角三角形的性质,利用已知条件推出是解此题的关键.2、D【解析】试题解析:A.∵y=3x−1,∴y+1=3x,∴y+1与x成正比例,故本选项正确.B.∵∴y与x成正比例,故本选项正确;C.∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D.∵y=x+3,不符合正比例函数的定义,故本选项错误.故选D.3、B【解析】

即故选B.4、A【解析】

利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,OA=OC,∵AC⊥BC,AB=10,∴,∴,∴;故选:A.【点睛】本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.5、D【解析】

因为A,C关于DB对称,P在DB上,连接AC,EC与DB交点即为P,此时的值最小.【详解】如图,因为A,C关于DB对称,P再DB上,作点连接AC,EC交BD与点P,此时最小.此时=PE+PC=CE,值最小.∵正方形中,,是的中点∴∠ABC=90°,BE=2,BC=4∴CE=故答案为故选D.【点睛】本题考查的是两直线相加最短问题,熟练掌握对称是解题的关键.6、C【解析】试题解析:∵a<1,b<1,

∴-a>1,-b>1.

∴-a+2-b=()2+2+()2,

=()2.

故选C.7、B【解析】由平均数公式可得这组数据的平均数为1;在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、1、85、85、88,可得其中位数是1;其方差为,故选B.8、D【解析】

先根据平行四边形的性质,求得∠C的度数,再根据四边形内角和,求得∠EAF的度数.【详解】解:∵平行四边形ABCD中,∠ABC=75°,∴∠C=105°,又∵AE⊥BC于E,AF⊥CD于F,∴四边形AECF中,∠EAF=360°-180°-105°=75°,故选:D.【点睛】本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.9、A【解析】

根据题意利用勾股定理得出BC的长,进而得出答案.【详解】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴树高为:(1+)m.故选:A.【点睛】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.10、B【解析】

根据尺规作图先证明四边形ABEF是菱形,再根据菱形的性质,利用勾股定理即可求解.【详解】由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,∴AF=AB,EF=EB,∵AD∥BC,∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴BA=BE,∴BA=BE=AF=FE,∴四边形ABEF是菱形,∴AE⊥BF∵BF=12,AB=10,∴BO=BF=6∴AO=∴AE=2AO=16故选B.【点睛】本题考查的是菱形的判定、复杂尺规作图、勾股定理的应用,掌握菱形的判定定理和性质定理、线段垂直平分线的作法是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.【详解】解:要使在实数范围内有意义,必须.12、1【解析】

根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.【详解】解:∵AB=AC,AD平分∠BAC,

∴AD⊥BC,

∴∠ADC=90°,点E为AC中点,

∴DE=AC=1,

故答案为:1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.13、【解析】

根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】解:∵,∴1-2x=x2,∴x2+2x-1=0,∴(x+1)(x-1)=0,解得,x1=-1,x2=1,经检验,当x=1时,原方程无意义,当x=-1时,原方程有意义,故原方程的根是x=-1,故答案为:x=-1.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.14、1.【解析】

根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF可得答案.【详解】∵AF⊥BF,∴∠AFB=90°,∵AB=6,D为AB中点,∴DF=AB=AD=BD=3,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴,即解得:DE=4,∴EF=DE-DF=1,故答案为:1.【点睛】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.15、70°【解析】

在平行四边形ABCD中,∠C=∠A,则求出∠A即可.【详解】根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,∵∠A=70°,∴∠C=70°.故答案为:70°.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.16、3【解析】

根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为:3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.17、-2【解析】

令分子为0,分母不为0即可求解.【详解】依题意得x2-4=0,x-2≠0,解得x=-2,故填:-2.【点睛】此题主要考查分式的值,解题的关键是熟知分式的性质.18、【解析】

根据,可设a=3k,则b=2k,代入所求的式子即可求解.【详解】∵,∴设a=3k,则b=2k,则原式=.故答案为:.【点睛】本题考查了比例的性质,根据,正确设出未知数是本题的关键.三、解答题(共66分)19、x2=-,x2=2.【解析】

先把方程化为一般式,然后利用因式分解法解方程.【详解】解:2x2+5x-7=0,(2x+7)(x-2)=0,2x+7=0或x-2=0,所以x2=,x2=2.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20、a(m﹣3)1.【解析】

先提取公因式,再利用完全平方公式分解因式即可解答【详解】原式=a(m1﹣6m+9)=a(m﹣3)1.【点睛】此题考查提公因式法和公式法的综合运用,解题关键在于熟练掌握运算法则21、2018.【解析】分析:先提公因式2018,再用平方差公式计算即可.详解:原式=2018(+)(-)=2018[()2-()2]=2018点睛:此题考查了实数的混合运算,提取公因式后利用平方差公式进行简便计算是解决此题的关键.22、①+2;②0、1;③原方程无解.【解析】

(1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解..【详解】解(1)原式=3-1-(1-)+-1=3-1-1++2-1=+2(2)解不等式①得,x≤1,

解不等式②得,x<4,

所以不等式组的解集是x≤1,

所以不等式组的非负整数解是0、1.

故答案为:0、1.(3)方程两边同乘(x+2)(x-2),

得:(x-2)2=(x+2)2+16,

整理解得x=-2.

经检验x=-2是增根,

故原方程无解.【点睛】(1)本题考查实数的混合运算、解不等式组和解分式方程;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时要注意符号的变化.23、(1)大货车用8辆,小货车用1辆(2)w=70a+11220(0≤a≤8且为整数)(3)使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元【解析】

(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解.(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式.(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意得16x+1(18-x)=228,解得x=8,∴18-x=18-8=1.答:大货车用8辆,小货车用1辆.(2)w=720a+800(8-a)+200(9-a)+620=70a+11220,∴w=70a+11220(0≤a≤8且为整数).(3)由16a+1(9-a)≥120,解得a≥2.又∵0≤a≤8,∴2≤a≤8且为整数.∵w=70a+11220,k=70>0,w随a的增大而增大,∴当a=2时,w最小,最小值为W=70×2+11220=3.答:使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元.24、20°【解析】试题分析:首先根据三角形内角和定理求出∠BAC的度数,然后根据角平分线的性质得出∠EAC的度数,然后根据Rt△ADC的内角和定理求出∠DAC的度数,从而得出∠DAE的度数.试题解析:∵∠B=36°,∠C=76°∴∠BAC=68°∵AE平分∠BAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论