版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省伊通县联考2024届八年级下册数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2.下列各式:①,②,③,④中,最简二次根式有()A.1个 B.2个 C.3个 D.4个3.下列边长相等的正多边形的组合中,不能镶嵌平面的是()A.正三角形和正方形 B.正三角形和正六边形C.正方形和正八边形 D.正五边形和正方形4.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(度)电费价格(元/度)0.480.530.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是().A.100 B.400 C.396 D.3975.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形6.下列式子是分式的是()A. B. C. D.7.已知一次函数的图象如图所示,则下列说法正确的是()A., B.,C., D.,8.若关于x的不等式组的整数解有3个,则a的取值范围是()A.3<a≤4 B.2<a≤3 C.2≤a<3 D.3≤a<49.小红随机写了一串数“”,数字“”出现的频数是()A.4 B.5 C.6 D.710.以下列长度的三条线段为边,能组成直角三角形的是()A.6,7,8 B.2,3,4 C.3,4,6 D.6,8,1011.如图所示的是某超市入口的双买闸门,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度是()A.74cm B.64cm C.54cm D.44cm12.为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE=100米(A,B,E在同一直线上),点C与点D分别在E的两侧(C,E,D在同一直线上),BE⊥CD,CD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为()米.(参考数据:,)A.350 B.250 C.200 D.150二、填空题(每题4分,共24分)13.已知,若是二元一次方程的一个解,则代数式的值是____14.如图,,的垂直平分线交于点,若,则下列结论正确是______(填序号)①②是的平分线③是等腰三角形④的周长.15.某校女子排球队的15名队员中有4个人是13岁,7个人是14岁,4个人是15岁,则该校女好排球队队员的平均年龄是____岁.16.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.17.如图,直线y=-2x+2与x轴、y轴分别相交于A、B两点,四边形ABCD是正方形,曲线在第一象限经过点D,则k=_______.18.已知是整数,则正整数n的最小值为___三、解答题(共78分)19.(8分)如图,在中,,是的垂直平分线.求证:是等腰三角形.20.(8分)解下列不等式或不等式组(1);(2)21.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在小正方形的顶点上,且平行四边形ABCD的面积为15.(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在小正方形的顶点上,请直接写出菱形ABEF的面积;22.(10分)一个工程队修一条3000米的公路,由于开始施工时增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?23.(10分)为了对某市区全民阅读状况进行调查和评估,有关部门随机抽取了部分市民进行每天阅读时间情况的调查,并根据调查结果制做了如下尚不完整的频数分布表(被调查者每天的阅读时间均在0﹣120分钟之内)阅读时间x(分钟)0≤x<3030≤x<6060≤x<9090≤x≤120频数450400m50频率0.450.40.1n(1)被调查的市民人数为多少,表格中,m,n为多少;(2)补全频数分布直方图;(3)某市区目前的常住人口约有118万人,请估计该市区每天阅读时间在60~120分钟的市民大约有多少万人?24.(10分)因式分解:(1)36﹣x2(2)ma2﹣2ma+m25.(12分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.(1)画出关于轴的对称图形,并写出其顶点坐标;(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.26.阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:.当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:.假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:.解决问题:(1)下列分式中属于真分式的是()A.B.C.D.(2)将假分式分别化为带分式;(3)若假分式的值为整数,请直接写出所有符合条件的整数x的值.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:对于一元二次方程ax2+bx+c=0(a≠0),当△=b2-4ac>0时方程有两个不相等的实数根,当△2、A【解析】
先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】解:①,②,③,④(y≥0),故其中的最简二次根式为①,共一个.
故选:A.【点睛】本题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.3、D【解析】
首先分别求出各个正多边形每个内角的度数,再结合镶嵌的条件作出判断.【详解】解:A项,正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴能密铺;B项,正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴能密铺;C项,正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,∴能密铺;D项,正五边形的每个内角是108°,正方形的每个内角是90°,∵90m+108n=360,m=4-6故选D.【点睛】本题考查了平面镶嵌的条件,解决此类问题,一般从正多边形的内角入手,围绕一个顶点处的所有内角之和是360°进行探究判断.4、C【解析】
先判断出电费是否超过400度,然后根据不等关系:七月份电费支出不超过200元,列不等式计算即可.【详解】解:0.48×200+0.53×200
=96+106
=202(元),
故七月份电费支出不超过200元时电费不超过400度,
依题意有0.48×200+0.53(x-200)≤200,
解得x≤1.
答:李叔家七月份最多可用电的度数是1.
故选:C.【点睛】本题考查了列一元一次不等式解实际问题的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.5、B【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,故选B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、B【解析】
根据分母中含有字母的式子是分式,可得答案.【详解】解:是分式,故选:B.【点睛】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.7、D【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k>1,直线与y轴负半轴相交,所以b<1.故选D.【点睛】本题考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.8、B【解析】解第一个不等式可得x<a+1,因关于x的不等式组有解,即1≤x<a+1,又因不等式组的整数解有3个,可得3<a+1≤4,即可得2<a≤3,故选B.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9、D【解析】
根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.【详解】∵一串数“”中,数字“3”出现了1次,∴数字“3”出现的频数为1.故选D.【点睛】此题考查频数与频率,解题关键在于掌握其概念10、D【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、∵62+72≠82,∴不能构成直角三角形,故本选项错误;B、∵22+32≠42,∴不能构成直角三角形,故本选项错误;C、∵32+42≠62,∴不能构成直角三角形,故本选项错误;D、∵62+82=102,∴能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.11、B【解析】
首先过A作AM垂直PC于点M,过点B作BN垂直DQ于点N,再利用三角函数计算AM和BN,从而计算出MN.【详解】解:根据题意过A作AM垂直PC于点M,过点B作BN垂直DQ于点N所以故选B.【点睛】本题主要考查直角三角形的应用,关键在于计算AM的长度,这是考试的热点问题,应当熟练掌握.12、B【解析】
设AB=x米,则AE=(100+x)米,然后利用特殊角的三角函数值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.【详解】设AB=x米,则AE=(100+x)米,在Rt△AED中,∵,则DE==(100+x),在Rt△AEC中,∠C=45°,∴CE=AE=100+x,由题意得,(100+x)+(100+x)=1000,解得x=250,即AB=250米,故选:B.【点睛】本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.二、填空题(每题4分,共24分)13、【解析】
把代入方程,得到,然后对进行化简,最后利用整体代入,即可得到答案.【详解】解:把代入方程,得到,∵∴原式=,故答案为:.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.注意灵活运用整体代入法解题.14、①②③④【解析】
由△ABC中,∠A=36°,AB=AC,根据等腰三角形的性质与三角形内角和定理,即可求得∠C的度数;又由线段垂直平分线的性质,易证得△ABD是等腰三角形,继而可求得∠ABD与∠DBC的度数,证得BD是∠ABC的平分线,然后由∠DBC=36°,∠C=72°,证得∠BDC=72°,易证得△DBC是等腰三角形,个等量代换即可证得④△BCD的周长=AB+BC.【详解】∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C==72°,故①正确;∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=36°,∴∠ABD=∠DBC,∴BD是∠ABC的平分线;故②正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-36°-72°=72°,∴∠BDC=∠C,∴BC=BD,∴△DBC是等腰三角形;故③正确;∵BD=AD,∴△BCD的周长=BD+BC+CD=AC+BC=AB+BC,故④正确;故答案为:①②③④.【点睛】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15、14【解析】
根据甲权平均数公式求解即可.【详解】(4×13+7×14+4×15)÷15=14岁.故答案为:14.【点睛】本题重点考查了加权平均数的计算公式,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).16、1【解析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.解答:解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=1.故答案为1.17、1.【解析】试题分析:作DE⊥x轴,垂足为E,连OD.可以证出△BOA≌△AED,得到AE=BO,AO=DE,所以S△DOE=•OE•DE=×1×1=,∴k=×2=1.故答案为1.考点:反比例函数综合题.18、1【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.三、解答题(共78分)19、见解析【解析】
先由AB=AC,∠A=36°,可求∠B=∠ACB==72°,然后由DE是AC的垂直平分线,可得AD=DC,进而可得∠ACD=∠A=36°,然后根据外角的性质可求:∠CDB=∠ACD+∠A=72°,根据等角对等边可得:CD=CB,进而可证△BCD是等腰三角形;【详解】证明:,.是的垂直平分线,..是的外角,.,是等腰三角形.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.20、;.【解析】
(1)先去分母,再去括号,移项、合并同类项即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】(1)2(x-1)+4x2x-2+4x2x-x2-4x-2.(2)解不等式是:,解不等式得:,所以不等式组的解集为.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1)见解析;(2)见解析;菱形ABEF的面积为8.【解析】
(1)由图可知A、B间的垂直方向长为3,要使平行四边形的面积为15,结合网格特点则可以在B的水平方向上取一条长为5的线段,可得点C,据此可得平行四边形;(2)根据网格特点,菱形性质画图,然后利用菱形所在正方形的面积减去三角形的面积以及小正方形的面积即可求得面积.【详解】(1)如图1所示,平行四边形ABCD即为所求;(2)如图2所示,菱形ABCD为所求,菱形ABCD的面积=4×4-4××3×1-2×1×1=16-6-2=8.【点睛】本题考查了作图——应用与设计,涉及了平行四边形的性质,菱形的性质等,正确把握相关图形的性质以及网格的结构特点是解题的关键.22、实际每天修路1米.【解析】
首先设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意可得等量关系:原来修3000米的时间-实际修3000米的时间=2天,根据等量关系列出方程即可.【详解】设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意得:-=2,解得:x=500,经检验,x=500是原分式方程的解,∴(1+50%)x=(1+50%)×500=1.答:实际每天修路1米.【点睛】本题考查的知识点是分式方程的应用,解题关键是正确理解题意,找出题目中的等量关系,列出方程,注意不要忘记检验.23、(1)1000,100,0.05;(2)根据(1)补图见解析;(3)估计该市区每天阅读时间在60~120分钟的市民大约有17.7万人.【解析】
(1)根据0≤x<30的频数和频率先求出总人数,用总人数乘以60≤x<90的频率求出m,用90≤x≤120的频数除以总人数求出n;(2)根据(1)求出的总人数,补全统计图即可;(3)用常住人口数乘以阅读时间在60~120分钟的人数的频率即可得出答案.【详解】(1)根据题意得:被调查的市民人数为=1000(人),m=1000×0.1=100,n==0.05;(2)根据(1)补图如下:(3)根据题意得:118×(0.1+0.05)=17.7(万人)估计该市区每天阅读时间在60~120分钟的市民大约有17.7万人.故答案为(1)1000,100,0.05;(2)根据(1)补图见解析;(3)估计该市区每天阅读时间在60~12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场安装空调责任合同范例
- 企业bt项目合同范例
- 供热安装合同范例
- 2024年定制化服务器租赁合同
- 2024年国际码头装卸仓储服务协议
- 2024幕墙工程调试运行合同
- 防网络电信诈骗主题班会
- 市政园林环卫工招聘协议
- 医院特殊环境用电安全规范
- 内陆中学安全保卫聘用合同
- 血标本采集法并发症
- 2024天津港保税区管委会雇员公开招聘6人高频500题难、易错点模拟试题附带答案详解
- 上海离职协议书模板
- 2024年中考语文复习分类必刷:非连续性文本阅读(含答案解析)
- 项目经理或管理招聘面试题与参考回答(某大型国企)
- 2025高考数学一轮复习-4.1-任意角和弧度制及三角函数的概念【课件】
- 工程进度款申请表
- 当代社会政策分析 课件 第八章 儿童社会政策
- 2023年徽商银行市区支行招聘综合柜员信息笔试上岸历年典型考题与考点剖析附带答案详解
- 2024年湖南化工职业技术学院单招职业技能测试题库带答案解析
- JGT 472-2015 钢纤维混凝土
评论
0/150
提交评论