黑龙江省鸡东县2024年八年级下册数学期末综合测试试题含解析_第1页
黑龙江省鸡东县2024年八年级下册数学期末综合测试试题含解析_第2页
黑龙江省鸡东县2024年八年级下册数学期末综合测试试题含解析_第3页
黑龙江省鸡东县2024年八年级下册数学期末综合测试试题含解析_第4页
黑龙江省鸡东县2024年八年级下册数学期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省鸡东县2024年八年级下册数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,,,则的度数为()A. B. C. D.2.下列说法中,正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线相等的四边形是矩形C.有一组邻边相等的矩形是正方形 D.对角线互相垂直的四边形是菱形3.不等式3(x-2)≥x+4的解集是(

)A.x≥5 B.x≥3 C.x≤5 D.x≥-54.设a=613,b=12-3,c=3+2,则a,A.b>c>a

B.b>a>c

C.c>a>b

D.a>c>b5.如图,平行四边形ABCD中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD,将△BCD绕点B旋转,当BD(即BD′)与AD交于一点E,BC(即BC′)同时与CD交于一点F时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF的周长的最小值是4+2A.①② B.②③ C.①②④ D.①②③④6.下列语句:①每一个外角都等于60∘A.1 B.2 C.3 D.47.下列各数中,没有平方根的是()A.65 B. C. D.8.某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是()A., B., C., D.,9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b10.下列函数:①y=2x+1②y=③y=x2﹣1④y=﹣8x中,是一次函数的有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为_______.12.每本书的厚度为,把这些书摞在一起总厚度(单位:随书的本数的变化而变化,请写出关于的函数解析式__,(不用写自变量的取值范围)13.已知2-5是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______14.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.15.已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m++3的值等于_____.16.某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为______米.17.若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____18.如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.(1)求证:四边形ABCD是菱形.(2)填空:①当∠ADC=°时,四边形ACEB为菱形;②当∠ADC=90°,BE=4时,则DE=20.(6分)如图,为美化校园环境,某校计划在一块长为100米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.(1)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(2)如果通道宽(米)的值能使关于的方程有两个相等的实数根,并要求修建的通道的宽度不少于5米且不超过12米,求出此时通道的宽.21.(6分)甲、乙两名射击运动员最近5次射击的成绩如下(单位:环):甲:7、8、2、8、1.乙:1、7、5、8、2.(1)甲运动员这5次射击成绩的中位数和众数分别是多少?(2)求乙运动员这5次射击成绩的平均数和方差.22.(8分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.23.(8分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.直接用含t的代数式分别表示:______,______;是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.24.(8分)如图,利用一面长18米的墙,用篱笆围成一个矩形场地ABCD,设AD长为x米,AB长为y米,矩形的面积为S平方米.(1)若篱笆的长为32米,求y与x的函数关系式,并直接写出自变量x的取值范围;(2)在(1)的条件下,求S与x的函数关系式,并求出使矩形场地的面积为120平方米的围法.25.(10分)已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.26.(10分)2019年6月11日至17日是我国第29个全国节能宣传周,主题为“节能减耗,保卫蓝天”。某学校为配合宣传活动,抽查了某班级10天的用电量,数据如下表(单位:度):度数8910131415天数112312(1)这10天用电量的众数是___________,中位数是_________;(2)求这个班级平均每天的用电量;(3)已知该校共有20个班级,试估计该校6月份(30天)总的用电量.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,

∴∠B+19°=x+14°,

∴∠B=x-5°,

∵AB=AC,

∴∠C=∠B=x-5°,

∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,

∵AD=DE,

∴∠DEA=∠DAE=x+9°,

在△ADE中,由三角形内角和定理可得

x+x+9°+x+9°=180°,

解得x=54°,即∠ADE=54°,

∴∠DAE=63°

故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.2、C【解析】

根据平行四边形、矩形、正方形、菱形的判定方法以及定义即可作出判断.【详解】解:一组对边平行且相等的四边形是平行四边形,故A错误;对角线相等的平行四边形是矩形,故B错误;有一组邻边相等的矩形是正方形,故C正确;对角线互相垂直平分的四边形是菱形或对角线互相垂直的平行四边形是菱形,故D错误;故本题答案应为:C.【点睛】平行四边形、矩形、正方形、菱形的判定方法以及定义是本题的考点,熟练掌握其判定方法是解题的关键.3、A【解析】

去括号、移项,合并同类项,系数化成1即可.【详解】3(x-2)≥x+43x-6≥x+42x≥10∴x≥5故选A.【点睛】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.4、B【解析】

先把a、b化简,然后计算b-a,b-c,a-c的值即可得出结论.【详解】解:a=613=23,b=12-3由b-a=2+3-23=2-3>0,∴b>a,由b-c=2+3-(3+2)=又∵a-c=23-(3+2)=3-2>0,∴a>故选B.【点睛】本题考查了无理数比较大小以及二次根式的性质.化简a、b是解题的关键.5、C【解析】

根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【详解】∵AB=BC=CD=AD=4,∠A=∠C=60°,∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°.∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°.故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°.故②正确;∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时.∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小.∵AB=4,∠A=60°,BE⊥AD,∴EB=2,∴△DEF的周长最小值为4+2.故④正确.故选C.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.6、C【解析】

根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.7、C【解析】

根据平方都是非负数,可得负数没有平方根.【详解】A、B、D都是正数,故都有平方根;

C是负数,故C没有平方根;

故选:C.【点睛】考查平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.8、D【解析】

根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:把数据从小到大的顺序排列为:2,1,1,8,10;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:D.【点睛】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键9、D【解析】由图象对称轴为直线x=-,则-=-,得a=b,A中,由图象开口向上,得a>0,则b=a>0,由抛物线与y轴交于负半轴,则c<0,则abc<0,故A错误;B中,由a=b,则a-b=0,故B错误;C中,由图可知当x=1时,y<0,即a+b+c<0,又a=b,则2b+c<0,故C错误;D中,由抛物线的对称性,可知当x=1和x=-2时,函数值相等,则当x=-2时,y<0,即4a-2b+c<0,则4a+c<2b,故D正确.故选D.点睛:二次函数y=ax2+bx+c(a≠0)中,a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定.此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否.10、B【解析】

根据一次函数的定义来分析判断即可,在某一个变化过程中,设有两个变量x和y,如果满足这样的关系:y=kx+b(k为一次项系数且k≠0,b为任意常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量(又称函数).【详解】解:①y=2x+1是一次函数,②y=是反比例函数,不是一次函数,③y=x2﹣1是二次函数,不是一次函数,④y=﹣8x是一次函数,故选:B.【点睛】一次函数的定义是本题的考点,熟练掌握其定义是解题的关键.二、填空题(每小题3分,共24分)11、(1,2)【解析】

根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移1个单位,向上平移1个单位,进而可得a、b的值.【详解】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),

∴线段AB向右平移1个单位,向上平移1个单位,

∴a=0+1=1,b=1+1=2,

点B1的坐标为(1,2),

故答案为(1,2),【点睛】本题考查坐标与图形的变化--平移,解题关键是掌握点的坐标的变化规律.12、【解析】

依据这些书摞在一起总厚度y(cm)与书的本数x成正比,即可得到函数解析式.【详解】解:每本书的厚度为,这些书摞在一起总厚度与书的本数的函数解析式为,故答案为:.【点睛】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.13、2+【解析】【分析】由于已知方程的一根2-5【详解】设方程的另一根为x1,由x1+2-5=4,得x1=2+5.故答案为2+5.【点睛】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.14、1【解析】

由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.【详解】解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;

乙车的平均速度为:300÷(9-6)=100(km/h),

当乙车7:30时,乙车离A的距离为:100×1.5=150(km),

∴点A(7.5,150),

由图可知点B(5,0),

设甲的函数解析式为:y=kt+b,

把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=1t-300,

当t=9时,y=1×9-300=240,

∴9点时,甲距离开A的距离为240km,

∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.

故答案为:1.

【点睛】本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.15、1【解析】

利用m是方程x2﹣2018x+1=0的一个根得到m2=2018m﹣1,m2+1=2018m,利用整体代入的方法得到原式=m++2,然后通分后再利用整体代入的方法计算.【详解】解:∵m是方程x2﹣2018x+1=0的一个根,∴m2﹣2018m+1=0,∴m2=2018m﹣1,m2+1=2018m,∴m2﹣2017m++3=2018m﹣1﹣2017m++3=m++2=+2=+2=2018+2=1.故答案为:1.【点睛】本题考查一元二次方程的解得定义,代数式求值,分式的加减.掌握整体思想,整体代入是解题关键.16、1×10-1【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:=1×10-1.故答案为:1×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、1.2【解析】分析:先由平均数的公式计算出a的值,再根据方差的公式计算即可.详解:∵数据10,9,a,12,9的平均数是10,∴(10+9+a+12+9)÷5=10,解得:a=10,∴这组数据的方差是15[(10−10)²+(9−10)²+(10−10)²+(12−10)²+(9−10)²]=1.2.故选B.点睛:本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、5【解析】

根据勾股定理,可得答案.【详解】解:PO=32+4故选:C.【点睛】本题考查了点的坐标,利用勾股定理是解题关键.三、解答题(共66分)19、(1)见解析;(2)①60;②.【解析】

(1)由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABCD为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABCD是菱形.(2)①由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABEC是菱形,则CA=AD=DC,此时三角形ADC为等边三角形,∠ADC=60°;②当∠ADC=90°时,四边形ABCD为正方形,三角形BCE为等腰直角三角形,因为BE=4,所以由勾股定理得CE=,.【详解】解:(1)证明:∵AC垂直平分BD,∴AB=AD,BF=DF,∵AB∥CD,∴∠ABD=∠CDB.∵∠AFB=∠CFD,∴△AFB≌△CFD(ASA),∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形.∵AB=AD,∴平行四边形ABCD是菱形.(2)①∵由(1)得:四边形ABCD是菱形,∴AB=CD,AB//CD,∵CE是CD的延长线,且CE=CD,∴由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC为平行四边形∵假设四边形ACEB为菱形,∴AC=CE∵已知AD=DC,∴AC=DC=AD,即三角形ADC为等边三角形,∴②∵由(1)得:四边形ABCD是菱形,且∠ADC=90°∴四边形ABCD为正方形,三角形BCE为直角三角形,∵CE=CD,∴由勾股定理得CE=,.【点睛】本题主要考察特殊四边形的性质,掌握特殊四边形的相关性质是解题的关键.20、(1)5米;(2)1米;

【解析】

(1)先用含a的式子先表示出花圃的长和宽后利用矩形面积公式,再根据通道所占面积是整个长方形空地面积的,列出方程进行计算即可;

(2)根据方程有两个相等的实数根求得a的值,即可解答;【详解】(1)由图可知,花圃的面积为(10-2a)(60-2a)由已知可列式:10×60-(10-2a)(60-2a)=×10×60,

解得:a1=5,a2=75(舍去),所以通道的宽为5米;

(2)∵方程x2-ax+25a-150=0有两个相等的实根,

∴△=a2-25a+150=0,解得:a1=1,a2=15,

∵5≤a≤12,

∴a=1.∴通道的宽为1米.【点睛】此题考查一元二次方程的应用,解题的关键是表示出花圃的长和宽,属于中档题,难度不算大.21、(1)中位数和众数分别是3,3;(2)2【解析】

(1)根据中位数和众数的定义可以解答本题;(2)根据平均数和方差的计算方法可以解答本题;【详解】解:(1)甲运动员的成绩按照从小到大排列是:2、7、3、3、1,∴甲运动员这5次射击成绩的中位数和众数分别是3,3.(2)由题意可得,,.【点睛】本题考查平均数、方差、中位数、众数,解答本题的关键是明确平均数和方差的计算方法、知道什么是中位数和众数.22、(1)证明见解析;(2)证明见解析;(3)△CFH是等边三角形,理由见解析.【解析】

(1)利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;

(2)利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.

(3)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.【详解】解:(1)∵∠BCA=∠DCE=60°,

∴∠BCE=∠ACD.

又BC=AC、CE=CD,

∴△BCE≌△ACD.(2)∵△BCE≌△ACD,

∴∠CBF=∠CAH.

∵∠ACB=∠DCE=60°,

∴∠ACH=60°.

∴∠BCF=∠ACH.

又BC=AC,

∴△BCF≌△ACH.

∴CF=CH.(3)∵CF=CH,∠ACH=60°,

∴△CFH是等边三角形.【点睛】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.23、(1),;(2)详见解析;(3)2【解析】

由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:,即,从而解得:,(2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,(3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,因此线段PQ中点M所经过的路径长为.【详解】由题意得,,,则,,,,∽,,即,解得:,故答案为:,,存在,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论