黑龙江省哈尔滨市哈十七中学2024届八年级下册数学期末调研试题含解析_第1页
黑龙江省哈尔滨市哈十七中学2024届八年级下册数学期末调研试题含解析_第2页
黑龙江省哈尔滨市哈十七中学2024届八年级下册数学期末调研试题含解析_第3页
黑龙江省哈尔滨市哈十七中学2024届八年级下册数学期末调研试题含解析_第4页
黑龙江省哈尔滨市哈十七中学2024届八年级下册数学期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市哈十七中学2024届八年级下册数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2 B.4 C.8 D.162.下列二次根式中,可与合并的二次根式是A. B. C. D.3.六边形的内角和是()A.540°B.720°C.900°D.360°4.已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是(

)A.x<2

B.x>5

C.2<x<5

D.0<x<2或x>55.一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1A.20分钟B.22分钟C.24分钟D.26分钟6.若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为()A.9:25 B.3:25 C.3:5 D.2:57.小马虎在下面的计算中只作对了一道题,他做对的题目是()A. B.a3÷a=a2C. D.=﹣18.下列二次根式是最简二次根式的是A. B. C. D.9.将一张矩形纸片沿一组对边和的中点连线对折,对折后所得矩形恰好与原矩形相似,若原矩形纸片的边,则的长为()A. B. C. D.210.如图是某种产品30天的销售图象,图1是产品日销售量y(件)与时间t(天)的函数关系,图2是一件产品的利润z(元)与时间t(天)的函数关系.则下列结论中错误的是()A.第24天销售量为300件 B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元 D.第15天与第30天的日销售量相等11.已知点P的坐标为P-5,3,则点PA.一 B.二 C.三 D.四12.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°二、填空题(每题4分,共24分)13.已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.14.使分式有意义的x范围是_____.15.如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为________.16.将二次根式化为最简二次根式的结果是________________17.如图,在中,直径,弦于,若,则____18.直角三角形的三边长分别为、、,若,,则__________.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,E为BC上一点,以CE为直径作⊙O恰好经过A、C两点,PF⊥BC交BC于点G,交AC于点F.(1)求证:AB是⊙O的切线;(2)如果CF=2,CP=3,求⊙O的直径EC.20.(8分)在平面直角坐标系中,已知点,,,点与关于轴对称.(1)写出点所在直线的函数解析式;(2)连接,若线段能构成三角形,求的取值范围;(3)若直线把四边形的面积分成相等的两部分,试求的值.21.(8分)如图,矩形中,点分别在边与上,点在对角线上,,.求证:四边形是平行四边形.若,,,求的长.22.(10分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?23.(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图像如图所示。(1)请根据图像回答下列问题:甲先出发小时后,乙才出发;在甲出发小时后两人相遇,这时他们距A地千米;(2)乙的行驶速度千米/小时;(3)分别求出甲、乙在行驶过程中的路程(千米)与时间(小时)之间的函数关系式(不要求写出自变量的取值范围)。24.(10分)已知y+2与3x成正比例,当x=1时,y的值为4.(1)求y与x之间的函数表达式;(2)若点(-1,a),(2,b)是该函数图象上的两点,请利用一次函数的性质比较a,b的大小.25.(12分)已知x=+1,y=-1,求x2+xy+y2的值.26.如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.

参考答案一、选择题(每题4分,共48分)1、A【解析】

解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,现在的方差s22=[(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(xn+100﹣﹣100)2]=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,方差不变.故选:A.【点睛】方差的计算公式:s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]2、A【解析】

根据最简二次根式的定义,对每一个选项进行化简即可.【详解】A、,与是同类二次根式,可以合并,该选项正确;B、,与不是同类二次根式,不可以合并,该选项错误;C、与不是同类二次根式,不可以合并,该选项错误;D、,与不是同类二次根式,不可以合并,该选项错误;故选择:A.【点睛】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.3、B【解析】试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.考点:多边形的内角和公式.4、D【解析】

根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.【详解】根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.故选D.【点睛】本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.5、C【解析】试题解析:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34∵10分钟走了总路程的14∴步行的速度=14÷10=1∴步行到达考场的时间是1÷140故选C.考点:函数的图象.6、C【解析】

根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【详解】解:∵相似三角形△ABC与△DEF面积的比为9:21,∴它们的相似比为3:1,∴△ABC与△DEF的周长比为3:1.故选:C.【点睛】本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.7、B【解析】

A.;B.;C.;D..故选B.8、B【解析】

化简得到结果,即可作出判断.【详解】A.被开方数含分母,故错误;B.正确;C.被开方数含分母,故错误;D.=,故错误;故选:B.【点睛】此题考查最简二次根式,解题关键在于检查最简二次根式的两个条件是否同时满足9、C【解析】

根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得.【详解】解:根据条件可知:矩形AEFB∽矩形ABCD,∴,设AD=BC=x,AB=1,则AE=x.则,即:x2=1.∴x=或﹣(舍去).故选:C.【点睛】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.10、D【解析】

根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=-x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=t+100,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【详解】A、根据图①可得第24天的销售量为300件,故A正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,当x=10时,z=-10+25=15,故B正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:∴y=-+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选D.【点睛】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.11、B【解析】

应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【详解】解:∵点P的坐标为P∴点P在第二象限故选:B【点睛】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、B【解析】

根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.【详解】∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.【点睛】本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.二、填空题(每题4分,共24分)13、﹣1【解析】

因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【详解】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.故答案是:m=﹣1.【点睛】考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.14、【解析】

满足分式有意义的条件:分母不等于零,据此列不等式求出答案.【详解】∵分式有意义,∴,∴,故答案为:.【点睛】此题考查分式有意义的条件:使分式的分母不等于零,熟记使分式有意义的条件是正确解答此题的关键.15、【解析】

过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.【详解】过A点作A⊥BD于F,∵∠DBC=90°,∴AF∥BC,∵CE=2AE,∴AF=BC,∵∠ABD=30°,∴AF=AB,∴BC=AB,∵∠ABD=30°,∠ADB=75°,∴∠BAD=75°,∠ACB=30°,∴∠ADB=∠BAD,∴BD=AB,∴BC=BD,∵CE=4,在Rt△CBE中,BC=CE=6,在Rt△CBD中,CD=BC=6.故答案为:6.【点睛】此题考查了含30度直角三角形的性质,以及等腰三角形的判定和性质,得到Rt△CBE是含30度直角三角形,以及Rt△CBD是等腰直角三角形是解本题的关键.16、4【解析】

直接利用二次根式的性质化简求出答案.【详解】,故答案为:4【点睛】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.17、【解析】

根据圆周角定理求出∠COB,根据正弦的概念求出CE,根据垂径定理解答即可.【详解】由圆周角定理得,∠COB=2∠A=60°,∴CE=OC•sin∠COE=2×=,∵AE⊥CD,∴CD=2CE=2,故答案为:2.【点睛】本题考查的是垂径定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.18、或5【解析】

根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.【详解】解:①若b是斜边长根据勾股定理可得:②若c是斜边长根据勾股定理可得:综上所述:或5故答案为:或5【点睛】此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.三、解答题(共78分)19、(1)见解析;(2)⊙O的直径EC=1.【解析】

(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.

(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.【详解】证明:(1)连接AO,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=10°,∵AO=CO,∴∠0AC=∠OCA=10°,∴∠BAO=120°-10°=90°,∵OA是半径∴AB是⊙O的切线;(2)解:连接OP,∵PF⊥BC,∴∠FGC=∠EGP=90°,∵CF=2,∠FCG=10°,∴FG=1,∴在Rt△FGC中CG=∵CP=1.∴Rt△GPC中,PG=设OG=x,则OC=x+,连接OP,,显然OP=OC=x+在Rt△OPG中,由勾股定理知即(x+)2=x2+()2∴x.∴⊙O的直径EC=EG+CG=2x++=1.故答案为:(1)见解析;(2)⊙O的直径EC=1.【点睛】本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.20、(1);(2)时,线段能构成三角形;(3)当时,把四边形的面积分成相等的两部分.【解析】

(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,因此可得点C的所在直线的解析式.(2)首先利用待定系数法计算直线AB的解析式,再利用点C是否在直线上,来确定是否构成三角形,从而确定m的范围.(3)首先计算D点坐标,设的中点为,过作轴于,轴于,进而确定E点的坐标,再计算DE所在直线的解析式,根据点C在直线DE上可求得m的值.【详解】解:(1)根据题意可得点,可得的当横坐标为m时,纵坐标为-3m+22,所以(2)设所在直线的函数解析式为,将点,代入得,解得,∴当点在直线上时,线段不能构成三角形将代入,得解得,∴时,线段能构成三角形;(3)根据题意可得,设的中点为,过作轴于,轴于,根据三角形中位线性质可知,由三角形中线性质可知,当点在直线上时,把四边形的面积分成相等的两部分,设直线的函数解析式为,将,代入,得,解得,∴,将代入,得,解得,∴当时,把四边形的面积分成相等的两部分.【点睛】本题主要考查一次函数的性质,本题难度系数较大,关键在于根据点在直线上来求参数的.21、(1)证明见详解;(2)1【解析】

(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;

(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【详解】解:(1)∵矩形ABCD中,AB∥CD,

∴∠FCH=∠EAG,

又∵CD=AB,BE=DF,

∴CF=AE,

又∵CH=AG,

∴△AEG≌△CFH,

∴GE=FH,∠CHF=∠AGE,

∴∠FHG=∠EGH,

∴FH∥GE,

∴四边形EGFH是平行四边形;(2)如图,连接EF,AF,

∵EG=EH,四边形EGFH是平行四边形,

∴四边形GFHE为菱形,

∴EF垂直平分GH,

又∵AG=CH,

∴EF垂直平分AC,

∴AF=CF=AE,

设AE=x,则FC=AF=x,DF=8-x,

在Rt△ADF中,AD2+DF2=AF2,

∴42+(8-x)2=x2,

解得x=1,

∴AE=1.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.22、20.8m.【解析】试题分析:过A作CN的平行线交BD于E,交MN于F,由相似三角形的判定定理得出△ABE∽△AMF,再由相似三角形的对应边成比例即可得出MF的长,进而得出结论.试题解析:过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴,即:,解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.∴住宅楼的高度为20.8m.考点:相似三角形的应用.23、(1)3,4,40(2)40(3)y=40x-120【解析】

(1)观察函数图象,即可得出结论;(2)根据速度=路程时间,即可算出乙的行驶速度;(3)根据速度=路程时间,求出甲的行驶速度,再结合甲的图象过原点O即可写出甲的函数表达式;设出乙的函数表达式为y=kx+b(k≠0),结合点的坐标利用待定系数法即可求出乙的函数表达式.【详解】解:(1)观察函数图象,发现:甲先出发3小时后,乙才出发;在甲出发4小时后,两人相遇,这时他们离A地40千米.故答案为:3;4;40.(2)乙行驶的速度为:80÷(5-2)=40(千米/小时),故答案为:40.(3)甲的速度为:80÷8=10(千米/小时),∵甲的函数图象过原点(0,0),甲的函数表达式:y=10x;设乙的函数表达式为y=kx+b(k≠0)点(3,0)和(5,80)在乙的图象上,有0=3k+b80=5k+b解得k=40b=-120,故乙的函数表达式:y=40x-120.【点睛】本题考查一次函数的应用,涉及利用待定系数法求一次函数、一次函数图像的性质知识点,学生们需要认真的分析.24、(1)y=6x-2;(2)a<b.【解析】试题分析:(1)由y+2与3x成正比例,设y+2=3kx(k≠0).将x=1,y=4代入求出k的值,确定出y与x的函数关系式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论