版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古乌兰察布市2024届八年级下册数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.小颖八年级第一学期的数学成绩分别为:平时90分,期中86分,期末95分若按下图所显示的权重要求计算,则小颖该学期总评成绩为()A.88 B. C. D.932.对于二次根式,以下说法不正确的是()A.它是一个无理数 B.它是一个正数 C.它是最简二次根式 D.它有最小值为33.在ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.3:4:4:3 C.3:3:4:4 D.3:4:3:44.一次函数y=kx﹣6(k<0)的图象大致是()A. B.C. D.5.若a+|a|=0,则等于()A.2﹣2a B.2a﹣2 C.﹣2 D.26.如图,在口ABCD中,对角线AC、BD交于点O.若AC=4,BD=5,BC=3,则△BOC的周长为()A.6 B.7.5 C.8 D.127.若代数式在实数范围内有意义,则的取值范围是()A. B. C. D.且8.如图,在▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC9.如图,矩形ABCD中,∠AOB=60°,AB=3,则BD的长是()A. B.5 C. D.610.在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是()A.斜边长为10cm B.周长为25cmC.面积为24cm2 D.斜边上的中线长为5cm二、填空题(每小题3分,共24分)11.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.12.已知一组数据,,,,,,则这组数据的众数是________.13.画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.14.已知一次函数的图象过点,那么此一次函数的解析式为__________.15.直角三角形的两直角边是3和4,则斜边是____________16.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.17.如图,在中,,、分别是、的中点,延长到点,使,则_____________.18.某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是(
)A.6,6.5 B.6,7 C.6,7.5 D.7,7.5三、解答题(共66分)19.(10分)如图,四边形是面积为的平行四边形,其中.(1)如图①,点为边上任意一点,则的面积和的面积之和与的面积之间的数量关系是__________;(2)如图②,设交于点,则的面积和的面积之和与的面积之间的数量关系是___________;(3)如图③,点为内任意一点时,试猜想的面积和的面积之和与的面积之间的数量关系,并加以证明;(4)如图④,已知点为内任意一点,的面积为,的面积为,连接,求的面积.20.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC关于点O的中心对称的△A(2)画出△ABC绕点O顺时针旋转90∘后的△(3)求(2)中线段BC扫过的面积.21.(6分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:(1)求服装项目在选手考评中的权数;(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.22.(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?23.(8分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:运往地
车型
甲地(元/辆)
乙地(元/辆)
大货车
720
800
小货车
500
650
(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.24.(8分)如图,在四边形ABCD中,AB∥CD,AC.BD相交于点O,且O是BD的中点(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=8,求四边形ABCD的周长.25.(10分)六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元;(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.26.(10分)如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据加权平均数的计算公式即可得.【详解】由题意得:小颖该学期总评成绩为(分)故选:B.【点睛】本题考查了加权平均数的计算公式,熟记公式是解题关键.2、A【解析】
根据最简二次根式的定义:被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【详解】是一个非负数,是最简二次根式,最小值是3,
当时x=0,是有理数,故A错误;故选A.【点睛】考查了最简二次根式,利用最简二次根式的性质是解题关键.3、D【解析】分析:根据平行四边形的性质:平行四边形的两组对角分别相等即可判断.详解:根据平行四边形的两组对角分别相等.可知D正确.故选D.点睛:本题考查了平行四边形的性质,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.4、D【解析】
一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.【详解】∵一次函数y=kx﹣6中,k<0∴直线必经过二、四象限;又∵常数项﹣6<0∴直线与y轴交于负半轴∴直线经过第二、三、四象限故选D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5、A【解析】
直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.6、B【解析】
利用平行四边形的对角线互相平分的性质,解答即可.【详解】解:在平行四边形ABCD中,则OC=12AC=2,OB=12BD=2.1,
所以△BOC的周长为OB+OC+BC=2.1+2+3=7.1.
故选:【点睛】本题主要考查了平行四边形的性质问题,应熟练掌握,属于基础性题目,比较简单.7、D【解析】分析:根据被开方数大于等于1,分母不等于1列式计算即可得解.详解:由题意得,x+1≥1且x≠1,解得x≥-1且x≠1.故选D.点睛:本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.8、C【解析】试题分析:平行四边形的两组对边分别平行且相等,对角线互相平分.考点:平行四边形的性质.9、D【解析】
先根据矩形的性质可得,再根据等边三角形的判定与性质可得,由此即可得出答案.【详解】四边形ABCD是矩形是等边三角形故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质,熟记矩形的性质是解题关键.10、B【解析】试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;∴斜边故选项A不符合题意;∴斜边上的中线长为5cm,故选项D不符合题意;∵三边长分别为6cm,8cm,10cm,∴三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的中线等于斜边的一半.二、填空题(每小题3分,共24分)11、两组对边分別平行的四边形是平行四边形【解析】
根据平行四边形的判定方法即可求解.【详解】解:∵两块相同的含有30°角的三角尺∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)【点睛】此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.12、45【解析】
根据众数的概念:一组数据中出现次数最多的数值即为众数,即可得到答案【详解】解:∵这组数据中45出现两次,出现次数最多∴众数是45故答案为45【点睛】本题考查众数的概念,熟练掌握众数的概念为解题关键13、640【解析】
首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.【详解】解:设这个零件的实际长是xcm,根据题意得:,解得:x=640,则这个零件的实际长是640cm.故答案为:640【点睛】此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.14、【解析】
用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为.故答案为【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.15、1【解析】
在直角三角形中,已知两直角边根据勾股定理可以计算斜边.【详解】在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==1,故答案为1.【点睛】本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.16、23【解析】当数据个数是奇数个时,中位数是最中间的数;当数据个数是偶数个时,中位数是最中间的两个数的平均数,由折线图可知,20本的有4人;21本的有8人;23本的有20人,24本的有8人,所以中位数是23。故答案是:2317、2【解析】
连接EF、AE,证四边形AEFD是平行四边形,注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.【详解】连接EF,AE.∵点E,F分别为BC,AC的中点,∴EF∥AB,EF=AB.又∵AD=AB,∴EF=AD.又∵EF∥AD,∴四边形AEFD是平行四边形.在Rt△ABC中,∵E为BC的中点,BC=4,∴AE=BC=2.又∵四边形AEFD是平行四边形,∴DF=AE=2.【点睛】本题主要考查了平行四边形判定,有中点时需考虑运用三角形的中位线定理或则直角三角形斜边上的中线等于斜边的一半.18、A【解析】【分析】结合统计表数据,根据众数和中位数的定义可以求出结果.【详解】从统计表中看出,6出现次数最多,故众数是6;第10和11户用电量的平均数是中位数.即:故选:A【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.三、解答题(共66分)19、(1);(2);(3)结论:;理由见解析;(4)6【解析】
(1)根据平行四边形的性质可知:,即可解决问题;(2)理由平行四边形的性质可知:,即可解决问题;(3)结论:.如图③中,作于,延长交于.根据;(4)设的面积为,的面积为,则,推出,可得的面积;【详解】解:(1)如图①中,,.四边形是平行四边形,,,,.故答案为.(2)如图②中,四边形是平行四边形,,,,.故答案为.(3)结论:.理由:如图③中,作于,延长交于.,,,.(4)设的面积为,的面积为,则,,的面积,【点睛】本题考查平行四边形的判定和性质、平行线的性质、等高模型等正整数,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)见解析;(2)见解析;(3)154【解析】
(1)根据中心对称的性质找出各个对应点的坐标,顺次连接即可;(2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可;(3)BC扫过的面积=S扇形OBB1−S扇形OCC1,由此计算即可.【详解】(1)如图(2)如图(3)BC扫过的面积=S扇形OBB1−S扇形OCC1=【点睛】本题考查的是旋转变换作图.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.21、(1)服装在考评中的权数为10%;(2)选择李明参加比赛,理由是李明的总成绩高.【解析】
(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.【详解】(1)服装在考评中的权数为:1-20%-30%-40%=10%,答:服装在考评中的权数为10%.(2)选择李明参加比赛,李明的总成绩为:85×10%+70×20%+80×30%+85×40%=80.5分,张华的成绩为:90×10%+75×20%+75×30%+80×40%=78.5分,因为80.5>78.5,所以李明成绩较好,选择李明成绩比赛.答:选择李明参加比赛,理由是李明的总成绩高.【点睛】考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.22、(1)应安排4天进行精加工,8天进行粗加工(2)①=②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元【解析】
解:(1)设应安排天进行精加工,天进行粗加工,根据题意得解得答:应安排4天进行精加工,8天进行粗加工.(2)①精加工吨,则粗加工()吨,根据题意得=②要求在不超过10天的时间内将所有蔬菜加工完,解得又在一次函数中,,随的增大而增大,当时,精加工天数为=1,粗加工天数为安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.23、(1)大货车用8辆,小货车用1辆(2)w=70a+11220(0≤a≤8且为整数)(3)使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元【解析】
(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解.(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式.(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意得16x+1(18-x)=228,解得x=8,∴18-x=18-8=1.答:大货车用8辆,小货车用1辆.(2)w=720a+800(8-a)+200(9-a)+620=70a+11220,∴w=70a+11220(0≤a≤8且为整数).(3)由16a+1(9-a)≥120,解得a≥2.又∵0≤a≤8,∴2≤a≤8且为整数.∵w=70a+11220,k=70>0,w随a的增大而增大,∴当a=2时,w最小,最小值为W=70×2+11220=3.答:使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元.24、(1)详见解析;(2)32【解析】
(1)利用全等三角形的性质证明AB=CD即可解决问题.(2)证明四边形ABCD是菱形,即可求四边形ABCD的周长.【详解】解:(1)证明:∵AB//CD,∴∠ABO=∠CDO,∵OB=OD,∠AOB=∠COD,∴△AOB≌△CODASA∴AB=CD.又∵AB//CD,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD的周长=4×AB=32.【点睛】本题考查平行四边形的判定和性质,菱形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25、(1)A、B两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024春季小学安全工作计划
- 2024控烟工作计划
- 公司2024年公司工作总结及2024年工作计划
- 学校工会计划范文
- 2024学年上学期五年级语文教学计划
- 七年级美术下册教学计划教学提纲
- 机械加工教研组活动计划
- 学校培优辅差工作计划汇编
- 公司员工年度工作计划
- 春季中班教研工作计划
- 学校后勤管理工作课件
- 院内物流管理系统功能需求
- 个人车位租赁合同电子版
- 某某市射击飞碟靶场项目可行性研究报告
- 塑料包装袋出厂检验报告单
- 无定河流域概况
- 《多项式》教学设计
- 教师招聘面试初中生物《软体动物》说课稿
- 南宁砂石骨料生产线建设项目可行性研究报告
- 根本死亡原因判定课件
- 整本书阅读《乡土中国》之《男女有别》课件14张-统编版高中语文必修上册
评论
0/150
提交评论