湘西市重点中学2024年八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页
湘西市重点中学2024年八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页
湘西市重点中学2024年八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页
湘西市重点中学2024年八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页
湘西市重点中学2024年八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘西市重点中学2024年八年级数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知关于x的一次函数y=kx+2k-3的图象经过原点,则k的值为()A. B. C. D.2.反比例函数y=-3x的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是(

A.b>c

B.b=c

C.b<c

D.不能确定3.如图,在中,平分交AC于点.若,则的长是()A. B. C. D.4.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤05.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4406.若a>b,则下列式子正确的是()A.a﹣4>b﹣3 B.a<b C.3+2a>3+2b D.﹣3a>﹣3b7.在同一平面直角坐标系内,将函数y=2(x+1)2﹣1的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(﹣1,1) B.(1,﹣2) C.(2,﹣2) D.(1,﹣1)8.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查9.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为()A.5 B.6 C.7 D.810.如图,在R△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从点B出发,沿B→C→A运动,如图(1)所示,设,点P运动的路程为,若与之间的函数图象如图(2)所示,则的值为A.3 B.4 C.5 D.611.已知一组数据a.b.c的平均数为5,方差为4,那么数据,,的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.1012.从一个十边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把这个十边形分割成的三角形的个数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为___.14.某鞋店试销一种新款女鞋,销售情况如下表所示:型号

22

22.5

23

23.5

24

24.5

25

数量(双)

3

5

10

15

8

3

2

鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差15.如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.16.如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.17.如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.18.如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.三、解答题(共78分)19.(8分)已知:如图,已知直线AB的函数解析式为

,AB与y轴交于点

,与x轴交于点

.(1)在答题卡上直接写出A,B两点的坐标;(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点

F,连接EF.问:①若的面积为

S,求S关于a的函数关系式;②

是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.20.(8分)实数、在数轴上的位置如图所示,化简:21.(8分)如图,直线与直线,两直线与轴的交点分别为、.(1)求两直线交点的坐标;(2)求的面积.22.(10分)化简并求值:,其中.23.(10分)(1)若解关于x的分式方程会产生增根,求m的值.(2)若方程的解是正数,求a的取值范围.24.(10分)往一个长25m,宽11m的长方体游泳池注水,水位每小时上升0.32m,(1)写出游泳池水深d(m)与注水时间x(h)的函数表达式;(2)如果x(h)共注水y(m3),求y与x的函数表达式;(3)如果水深1.6m时即可开放使用,那么需往游泳池注水几小时?注水多少(单位:m3)?25.(12分)已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=1.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于1且小于1,求k的取值范围.26.如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由

参考答案一、选择题(每题4分,共48分)1、B【解析】

将原点代入一次函数的解析式中,建立一个关于k的方程,解方程即可得出答案.【详解】∵关于x的一次函数y=kx+2k-3的图象经过原点,∴,解得,故选:B.【点睛】本题主要考查一次函数,掌握一次函数图像上的点符合一次函数的解析式是解题的关键.2、A【解析】

根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.【详解】解:∵k=-3<0,则y随x的增大而增大.又∵0>a>a-1,则b>c.故选A.【点睛】本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:(1)反比例函数y=kx(k≠(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.3、A【解析】

根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出BD的长.【详解】∵∠A=∠DBC=36°,∠C公共,∴△ABC∽△BDC,且AD=BD=BC.设BD=x,则BC=x,CD=2-x.由于,∴.整理得:x2+2x-4=0,解方程得:x=-1±,∵x为正数,∴x=-1+,即AD=故选A.【点睛】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出BD的长.4、D【解析】

表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.5、A【解析】

根据题意可以列出相应的一元二次方程,从而可以解答本题.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:A.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.6、C【解析】

根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立.【详解】解:A、a>b⇒a﹣4>b﹣4或者a﹣3>b﹣3,故A选项错误;B、a>b⇒a>b,故B选项错误;C、a>b⇒2a>2b⇒3+2a>3+2b,故C选项正确;D、a>b⇒﹣3a<﹣3b,故D选项错误.故选C.考点:不等式的性质.7、B【解析】

先求出原函数的顶点坐标,再按照要求移动即可.【详解】解:函数y=2(x+1)2﹣1的顶点坐标为(﹣1,﹣1),点(﹣1,﹣1)沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度后对应点的坐标为(1,﹣2),即平移后抛物线的顶点坐标是(1,﹣2).故选:B.【点睛】本题考查函数的相关图像性质,能够求出顶点坐标是解题关键.8、D【解析】

A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.9、C【解析】

解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.【详解】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.

设所求n边形边数为n,

则(n-2)•180°=360°×3-180°,

解得n=7,

故选C.【点睛】本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.10、A【解析】

根据已知条件和图象可以得到BC、AC的长度,当x=4时,点P与点C重合,此时△DPC的面积等于△ABC面积的一半,从而可以求出y的最大值,即为a的值.【详解】根据题意可得,BC=4,AC=7−4=3,当x=4时,点P与点C重合,∵∠ACB=90°,点D为AB的中点,∴S△BDP=S△ABC,∴y=××3×4=3,即a的值为3,故选:A.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,利用数形结合的思想解决问题.11、B【解析】

根据数据a,b,c的平均数以及方差即可求出a-2,b-2,c-2的平均数和方差.【详解】∵数据a,b,c的平均数是5,∴,∴,∴数据a-2,b-2,c-2的平均数是3,∵数据a,b,c的方差为4,∴∴a-2,b-2,c-2的方差所以B选项正确.【点睛】主要考查平均数和方差的公式计算以及灵活运用.12、B【解析】

根据从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n边形分割成(n-2)个三角形的规律作答.【详解】从十边形的一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个十边形分割成8个三角形。故选B【点睛】此题考查多边形的对角线,解题关键在于掌握其公式二、填空题(每题4分,共24分)13、【解析】

根据平行四边形的性质及两点之间线段最短进行作答.【详解】由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BGCE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE=.所以,HD+HE最小值为.【点睛】本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.14、B【解析】

根据题意可得:鞋店经理最关心的是,哪种型号的鞋销量最大,即各型号的鞋的众数.【详解】鞋店经理最关心的是,哪种型号的鞋销量最大,而众数是数据中出现次数最多的数,故鞋店经理关心的是这组数据的众数.

故选:B.15、3或6【解析】

先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO,由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,∵点C(0,6),∴OC=6,∴BC=6-b,在△DBC和△BAO中,∴△DBC≌△BAO(AAS),∴BC=OA,即6-b=b,∴b=3;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=6,BC=DF,∵OB=b,OA=b,∴BC=DF=b-6,∵BC=6-b,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.16、3或【解析】

由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBD=∠CBD,∴∠FBD=∠FDB,∴FB=FD=11cm,∵AF=5cm,∴AD=16cm,∵点E是BC的中点,∴CE=BC=AD=8cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,分两种情况:①当点Q在EC上时,根据PF=EQ可得:5-t=8-2t,解得:t=3;②当Q在BE上时,根据PF=QE可得:5-t=2t-8,解得:t=.所以,t的值为:t=3或t=.故答案为:3或.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.17、x<2.【解析】

根据不等式与函数的关系由图像直接得出即可.【详解】由图可得关于的不等式的解集为x<2.故填:x<2.【点睛】此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.18、【解析】

根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:根据勾股定理,AB=,

BC=,

AC=,

∵AC2+BC2=AB2=26,

∴△ABC是直角三角形,

∵点D为AB的中点,

∴CD=AB=×=.

故答案为.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.三、解答题(共78分)19、(1);(2)①(-5≤a≤0);②存在,【解析】

(1)由直线AB解析式,令x=0与y=0分别求出y与x的值,即可确定出A与B的坐标;(2)①把P坐标代入直线AB解析式,得到a与b的关系式,三角形POB面积等于OB为底边,P的纵坐标为高,表示出S与a的解析式即可;②存在,理由为:利用三个角为直角的四边形为矩形,得到四边形PFOE为矩形,利用矩形的对角线相等得到EF=PO,由O为定点,P为动点,得到OP垂直于AB时,OP取得最小值,利用面积法求出OP的长,即为EF的最小值.【详解】解:(1)对于直线AB解析式y=2x+10,令x=0,得到y=10;令y=0,得到x=-5,则A(0,10),B(-5,0);(2)连接OP,如图所示,①∵P(a,b)在线段AB上,∴b=2a+10,由0≤2a+10≤10,得到-5≤a≤0,由(1)得:OB=5,∴则(-5≤a≤0);②存在,理由为:∵∠PFO=∠FOE=∠OEP=90°,∴四边形PFOE为矩形,∴EF=PO,∵O为定点,P在线段AB上运动,∴当OP⊥AB时,OP取得最小值,∵,∴∴EF=OP=综上,存在点P使得EF的值最小,最小值为.【点睛】本题属于一次函数综合题,考查的是:一次函数与坐标轴的交点,坐标与图形性质,矩形的判定与性质,勾股定理,以及三角形面积求法,熟练掌握性质及定理是解本题的关键.20、-2【解析】

先由数轴判断,,,然后根据二次根式及绝对值的性质化简即可.【详解】解:由数轴可知,,∴原式【点睛】本题考查了二次根式及绝对值的性质,通过数轴判定相关式子的符号并运用性质化简是解题的关键.21、(1)A(1,0),B(3,0);(2)1【解析】分析:(1)通过解方程组组可得到C点坐标;(2)先确定A点和B点坐标,然后根据三角形面积公式求解.详解:(1)由得∴.(2)在中,当时,∴在中,当时,∴∴∴.点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22、,【解析】

首先进行化简,在代入计算即可.【详解】原式当时,原式【点睛】本题主要考查根式的化简,注意根式的分母不等为0,这是必考题,必须掌握.23、(1)m=-1或2;(2)a<2且a≠-1【解析】

(1)根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出m的值.

(2)先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.【详解】解:(1)方程两边都乘(x+2)(x-2),得

2(x+2)+mx=3(x-2)

∵最简公分母为(x+2)(x-2),

∴原方程增根为x=±2,

∴把x=2代入整式方程,得m=-1.

把x=-2代入整式方程,得m=2.

综上,可知m=-1或2.

(2)解:去分母,得2x+a=2-x

解得:x=,∵解为正数,∴>0,∴2-a>0,

∴a<2,且x≠2,

∴a≠-1

∴a<2且a≠-1.【点睛】本题考查了分式方程的增根、分式方程的解、一元一次不等式,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24、(1)d=0.32x;(2)y=0.88x;(3)需往游泳池注水5小时;注水440m3【解析】试题分析:(1)根据题意知:利用水位每小时上升0.32m,得出水深d(m)与注水时间x(h)之间的函数关系式;(2)首先求出游泳池每小时进水的体积,再求y与x的函数表达式即可;

(3)利用(1)中所求,结合水深不低于1.6m得出不等式求出即可.【解答】解:(1)d=0.32x;

(2)15×11×0.32∴y=88x(3)设向游泳池注水x小时,由题意得:

0.32x≥1.6,

解得:x≥5,∴y=88x=88×x=440m3.答:向游泳池至少注水4小时后才可以使用.注水440m3【点评】此题主要考查了一次函数的应用以及不等式的应用,根据题意得出游泳池水深d(m与注水时间x(h)之间的函数关系式是解题关键.25、(3)证明见解析;(2)3<k<2.【解析】

(3)根据方程的系数结合根的判别式,求得判别式恒成立,因此得证;(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于的不等式组,解之即可.【详解】(3)证明:△=b2-4ac=[-(k+3)]2-4×(2k-2)=k2-6k+9=(k-3)2,∵(k-3)2≥3,即△≥3,∴此方程总有两个实数根,(2)解:解得

x3=k-3,x2=2,∵此方程有一个根大于3且小于3,而x2>3,∴3<x3<3,即3<k-3<3.∴3<k<2,即k的取值范围为:3<k<2.【点睛】本题考查了根的判别式,解题的关键是:(3)牢记“当时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.26、(1)G(0,4-);(2);(3).【解析】

1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出,那么OG=OA-AG=4-,于是G(0,4-);(2)先在Rt△AGF中,由,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BFtan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.【详解】解:(1)∵F(1,4),B(3,4),∴AF=1,BF=2,由折叠的性质得:GF=BF=2,在Rt△AGF中,由勾股定理得,∵B(3,4),∴OA=4,∴OG=4-,∴G(0,4-);(2)在Rt△AGF中,∵,∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论