版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城市莘县2024年八年级下册数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,,是的中点,,,若,,①四边形是平行四边形;②是等腰三角形;③四边形的周长是;④四边形的面积是1.则以上结论正确的是A.①②③ B.①②④ C.①③④ D.②④2.二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.3.下列说法中错误的是()A.四个角相等的四边形是矩形 B.四条边相等的四边形是正方形C.对角线相等的菱形是正方形 D.对角线垂直的矩形是正方形4.使有意义的的取值范围是()A. B. C. D.5.化简的结果是A.-2 B.2 C.-4 D.46.把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n=8,则直线AB的表达式为()A.y=﹣2x+4 B.y=﹣2x+8 C.y=﹣2x﹣4 D.y=﹣2x﹣87.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.8.下列命题中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相平分且相等的四边形是正方形9.若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为()A.9:25 B.3:25 C.3:5 D.2:510.在平行四边形ABCD中,数据如图,则∠D的度数为()A.20° B.80° C.100° D.120°二、填空题(每小题3分,共24分)11.矩形、菱形和正方形的对角线都具有的性质是_____.12.在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.13.计算的结果等于______________.14.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.15.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于_____.16.如图,在平面直角坐标系中,矩形OABC的边OA=6,OC=2,一条动直线l分别与BC、OA将于点E、F,且将矩形OABC分为面积相等的两部分,则点O到动直线l的距离的最大值为_____.17.已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.18.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).
(1)求直线AB的解析式.(2)求△OAC的面积.(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角角形?如果存在,求出点M的坐标;如果不存在,说明理由.20.(6分)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.21.(6分)随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:2019年中考体育成绩(分数段)统计表分数段频数(人)频率25≤x<30120.0530≤x<3524b35≤x<40600.2540≤x<45a0.4545≤x<50360.15根据上面提供的信息,回答下列问题:(1)表中a和b所表示的数分别为a=______,b=______;并补全频数分布直方图;(2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在______分数段内?(3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?22.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(8分)已知在中,是边上的一点,的角平分线交于点,且,求证:.24.(8分)计算:(1)(2)25.(10分)如图,在□ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.求证:四边形BEDF是平行四边形.26.(10分)为了考察包装机包装糖果质量的稳定性,从中抽取10袋,测得它们的实际质量(单位:g)如下:505,504,505,498,505,502,507,505,503,506(1)求平均每袋的质量是多少克.(2)求样本的方差.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【详解】①,,,,,四边形是平行四边形,故①正确;②是的中点,,,是等腰三角形,故②正确;③,,,,四边形是平行四边形,,,,,,,四边形的周长是故③正确;④四边形的面积:,故④错误,故选.【点睛】此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB长.2、B【解析】
根据二次根式的被开方数是非负数解题.【详解】解:依题意,得
a-1≥0,
解得,a≥1.
故选:B.【点睛】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3、B【解析】
根据矩形和正方形的性质和判定进行分析即可.【详解】A、四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;
B、四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
C、对角线相等的菱形是正方形,该说法正确,不符合题意;
D、对角线垂直的矩形是正方形,该说法正确,不符合题意.
故选B.【点睛】考核知识点:正方形和矩形的判定.理解定理是关键.4、B【解析】
根据二次根式有意义的条件得到关于x的不等式,解不等式即得答案.【详解】解:要使有意义,则,解得.故选B.【点睛】本题考查了二次根式有意义的条件,明确二次根式中被开方数非负是求解的关键.5、B【解析】故选:B6、B【解析】
由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【详解】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=1③把③代入②,解得y=﹣2x+1,即直线AB的解析式为y=﹣2x+1.故选:B.【点睛】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.7、A【解析】
先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,
∴共比赛场数为,
故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.8、C【解析】
根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.【详解】解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9、C【解析】
根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【详解】解:∵相似三角形△ABC与△DEF面积的比为9:21,∴它们的相似比为3:1,∴△ABC与△DEF的周长比为3:1.故选:C.【点睛】本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.10、B【解析】
依据平行四边形的性质可得5x+4x=180°,解得x=20°,则∠D=∠B=80°.【详解】∵四边形ABCD是平行四边形,∴AD∥BC.∴5x+4x=180°,解得x=20°.∴∠D=∠B=4×20°=80°.故选B.【点睛】本题主要考查了平行四边形的性质:邻角互补.同时考查了方程思想.二、填空题(每小题3分,共24分)11、对角线互相平分【解析】
先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.【详解】解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故答案为对角线互相平分.【点睛】本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.12、1.【解析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.13、【解析】
先用平方差公式,再根据二次根式的性质计算可得.【详解】解:原式==-=5-9=-4故答案为:-4【点睛】本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.14、192.2【解析】
由题意可知∠NAB=75°,∠SAC=15°,从而得到∠BAC=90°,然后利用勾股定理即可求出BC.【详解】解:由题意可知∠NAB=75°,∠SAC=15°,∴∠BAC=90°,∵AB=900米,AC=1200米,∴BC==1500米.故答案为1500.【点睛】本题考查了勾股定理的应用,得到∠BAC=90°是解题的关键.15、1【解析】
首先证明是等边三角形,求出,即可解决问题.【详解】解:由作图可知,四边形是平行四边形,,,,,是等边三角形,,,,四边形的周长为1,故答案为1.【点睛】本题考查作图复杂作图,平行四边形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、.【解析】
根据一条动直线l将矩形OABC分为面积相等的两部分,可知G和H分别是OB和OC的中点,得GH=3,根据勾股定理计算OG的长,并且知点O到直线l的距离最大,则l⊥OG,可得结论.【详解】连接OB,交直线l交于点G,∵直线l将矩形OABC分为面积相等的两部分,∴G是OB的中点,过G作GH∥BC,交OC于H,∵BC=OA=6,∴GH=BC=3,OH=OC=1,若要点O到直线l的距离最大,则l⊥OG,Rt△OGH中,由勾股定理得:OG=,故答案为:.【点睛】本题考查一次函数和矩形的综合运用,考查了矩形的性质,直角三角形的性质,勾股定理,确定直线l与OB垂直时,OG最大是本题的关键.17、2【解析】
图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.【详解】解:∵图象经过第一、二、三象限,∴直线与y轴的交点在正半轴上,则b>2.∴符合条件的b的值大于2即可.∴b=2,故答案为2.【点睛】考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.18、【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:【点睛】此题考查概率公式,掌握运算法则是解题关键三、解答题(共66分)19、(1)y=﹣x+6;(2)12;(3)点M的坐标为(0,-2)或(0,-6).【解析】分析:(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)分两种情形①过点A作AB的垂线AM交y轴与M.②过点B作BM′⊥AB交y轴与M′,求出点M与M′坐标即可.详解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)如图,①过点A作AB的垂线AM交y轴与M.∵直线AB的解析式为y=-x+6,∴直线AM的解析式为y=x-2,∴M(0,-2).②过点B作BM′⊥AB交y轴与M′,则直线BM′的解析式为y=x-6,∴M′(0,-6),综上所述,满足条件的点M的坐标为(0,-2)或(0,-6).点睛:本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,学会用分类讨论的思想思考问题是解题关键.20、(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.【解析】试题分析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.试题解析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+1.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤2.∵在w=10m+1中,k=10>0,∴w的值随m的增大而增大,∴当m=2时,w取最大值,最大值为10×2+1=120,∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.考点:一次函数的应用,二元一次方程组的应用,解一元一次不等式.21、(1)a=108,b=0.1;补全频数分布直方图见解析;(2)40≤x<45;(3)优秀的约有7200名.【解析】
(1)根据在25≤x<30分数段内的频数和频率可以求得本次调查学生数,从而可以求得a、b的值,进而可以将频数分布直方图补充完整;
(2)根据频数分布表中的数据可以得到这组数据的中位数所在的分数段,从而可以解答本题;
(3)根据频数分布表中的数据可以计算出该市12000名九年级考生中考体育成绩为优秀的约有多少名.【详解】(1)本次抽取的学生有:12÷0.05=240(人),
a=240×0.45=108,b=24÷240=0.1,
补全频数分布直方图(2)由频数分布表可知,
中位数在40≤x<45这个分数段内,
∴甲同学的体育成绩在40≤x<45分数段内,
故答案为:40≤x<45;
(3)12000×(0.45+0.15)=7200(名),
答:该市12000名九年级考生中考体育成绩为优秀的约有7200名.【点睛】考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22、(1)乙队单独完成需2天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.【解析】
(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.【详解】解:(1)设乙队单独完成需x天.根据题意,得:.解这个方程得:x=2.经检验,x=2是原方程的解.∴乙队单独完成需2天.(2)设甲、乙合作完成需y天,则有,解得,y=36;①甲单独完成需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024春季小学安全工作计划
- 2024控烟工作计划
- 公司2024年公司工作总结及2024年工作计划
- 学校工会计划范文
- 2024学年上学期五年级语文教学计划
- 七年级美术下册教学计划教学提纲
- 机械加工教研组活动计划
- 学校培优辅差工作计划汇编
- 公司员工年度工作计划
- 春季中班教研工作计划
- MOOC 概率论与数理统计-西安科技大学 中国大学慕课答案
- MOOC 创业管理-江苏大学 中国大学慕课答案
- 考古发现与中国文化智慧树知到期末考试答案2024年
- 2024年江苏省徐州市中考一模化学试题
- 建设工程施工现场远程视频监控系统建设应用标准
- 日咖夜酒潮玩新生生活节
- 小班数学《开火车》课件
- 银行保安服务整体服务设想及策划
- 六年级百分数乘法计算专题练习题100道(家长老师必备-直接打印使用)
- 教育部家庭教育指导手册
- 2024年反电诈知识培训考试题库(附答案)
评论
0/150
提交评论