2024年广东省深圳市北环中学八年级数学第二学期期末复习检测模拟试题含解析_第1页
2024年广东省深圳市北环中学八年级数学第二学期期末复习检测模拟试题含解析_第2页
2024年广东省深圳市北环中学八年级数学第二学期期末复习检测模拟试题含解析_第3页
2024年广东省深圳市北环中学八年级数学第二学期期末复习检测模拟试题含解析_第4页
2024年广东省深圳市北环中学八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东省深圳市北环中学八年级数学第二学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若分式口,的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+或x B.-或÷ C.+或÷ D.-或x2.为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是()A.方差 B.众数 C.中位数 D.平均数3.如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:①当时,两个探测气球位于同一高度②当时,乙气球位置高;③当时,甲气球位置高;其中,正确结论的个数是()A.个 B.个 C.个 D.个4.方程x2﹣9=0的解是()A.x=3 B.x=9 C.x=±3 D.x=±95.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣46.某跳远队准备从甲、乙、丙、丁4名运动员中选取成绩好且稳定的一名选手参赛,经测试,他们的成绩如下表,综合分析应选()成绩甲乙丙丁平均分(单位:米)6.06.15.54.6方差0.80.20.30.1A.甲 B.乙 C.丙 D.丁7.关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是()A.①②③ B.②③④ C.①③④ D.①②③④8.一次函数y=-2x-1的图象不经过()象限A.第一 B.第二 C.第三 D.第四9.直角三角形两条直角边分别是和,则斜边上的中线等于()A. B.13 C.6 D.10.下列四个多项式中,能因式分解的是()A.a2+1 B.a2-6a+9 C.x2+5y D.x2-5y二、填空题(每小题3分,共24分)11.如图,正方形的定点与正方形的对角线交点重合,正方形和正方形的边长都是,则图中重叠部分的面积是__________.12.如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.13.若代数式和的值相等,则______.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,AO=3,AE垂直平分OB于点E,则AD的长为_____.15.已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.16.若分式方程有增根,则a的值为_____.17.已知点在直线上,则=__________.18.已知,若是二元一次方程的一个解,则代数式的值是____三、解答题(共66分)19.(10分)计算:(1);(2);(3)先化简再求值,其中,.20.(6分)如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;(2)甲行驶10分钟后,甲、乙两人相距多少千米?21.(6分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.22.(8分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。23.(8分)如图,是等边三角形,是中线,延长至,.(1)求证:;(2)请在图中过点作交于,若,求的周长.24.(8分)已知,求代数式的值。25.(10分)(10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.26.(10分)如图,在矩形ABCD中,AC、BD相交于点O,过点A作BD的平行线AE交CB的延长线于点E.(1)求证:BE=BC;(2)过点C作CF⊥BD于点F,并延长CF交AE于点G,连接OG.若BF=3,CF=6,求四边形BOGE的周长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

分别将运算代入,根据分式的运算法则即可求出答案.【详解】综上,在“口”中添加的运算符号为或故选:C.【点睛】本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.2、C【解析】

根据中位数的定义求解.【详解】解:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),反映的是一组数据的中间水平.因此能合理反映该公司年工资中等水平的是中位数.故选C.3、D【解析】

根据图象进行解答即可.【详解】解:①当x=10时,两个探测气球位于同一高度,正确;

②当x>10时,乙气球位置高,正确;

③当0≤x<10时,甲气球位置高,正确;

故选:D.【点睛】本题考查了一次函数的应用、解题的关键是根据图象进行解答.4、C【解析】试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.解:移项得;x2=9,两边直接开平方得:x=±3,故选C.考点:解一元二次方程-直接开平方法.5、D【解析】试题分析:直线l与y轴的交点(0,-3),而y=a为平行于x轴的直线,观察图象可得,当a<-3时,直线l与y=a的交点在第四象限.故选D考点:数形结合思想,一次函数与一次方程关系6、B【解析】

根据平均数与方差的性质即可判断.【详解】∵4位运动员的平均分乙最高,甲成绩也很好,但是乙的方差较小,故选乙故选B.【点睛】此题主要考查利用平均数、方差作决策,解题的关键是熟知平均数、方差的性质.7、D【解析】

利用正方形的判定方法逐一分析判断得出答案即可.【详解】解:①对角线互相垂直且相等的平行四边形是正方形,故正确;②对角线互相垂直的矩形是正方形,故正确;③对角线相等的菱形是正方形,故正确;④对角线互相垂直平分且相等的四边形是正方形,故正确;故选:D.【点睛】本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.8、A【解析】

先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】∵一次函数y=−2x−1中,k=−2<0,b=−1<0,∴此函数的图象经过二、三、四象限,故选A.【点睛】此题考查一次函数的性质,解题关键在于判断出k、b的符号9、A【解析】

根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线等于.故选:A.【点睛】此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.10、B【解析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B是完全平方公式的形式,故B能分解因式;故选B.二、填空题(每小题3分,共24分)11、【解析】

根据题意可得重叠部分的面积和面积相等,求出面积即可.【详解】解:如图,四边形和是正方形又故答案为:1【点睛】本题考查了正方形的性质,将重叠部分的面积进行转化是解题的关键.12、1.【解析】

根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.【详解】由翻转变换的性质可知,BF=DF,则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,故答案为:1.【点睛】本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13、【解析】

由题意直接根据解分式方程的一般步骤进行运算即可.【详解】解:由题意可知:=故答案为:.【点睛】本题考查解分式方程,熟练掌握解分式方程的一般步骤是解题的关键.14、3【解析】

由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故答案是:3.【点睛】考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15、1或3【解析】

数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值【详解】解:连接AC和BD交于一点O,四边形ABCD为菱形垂直平分AC,点P在线段AC的垂直平分线上,即BD上在直角三角形APO中,由勾股定理得如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3故答案为:1或3【点睛】本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.16、3【解析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:分式方程去分母得:x﹣5(x﹣3)=a,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:a=3,故答案为:3【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17、【解析】

把代入解析式,解方程即可.【详解】将点代入直线的解析式,得4=3a+2,∴.a=故本题应填写:.【点睛】本题考查了点在函数图像上,掌握函数解析式的基本性质是解题的关键.18、【解析】

把代入方程,得到,然后对进行化简,最后利用整体代入,即可得到答案.【详解】解:把代入方程,得到,∵∴原式=,故答案为:.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.注意灵活运用整体代入法解题.三、解答题(共66分)19、(1);(2);(3),2.【解析】

(1)原式利用多项式乘以多项式法则计算即可求出值;

(2)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;

(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:(1);(2);(3)当,时,原式.故答案为:(1);(2);(3),2.【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.20、(1)S甲=0.5t;S乙=t﹣6;(2)甲行驶10分钟后,甲、乙两人相距1千米;【解析】分析:设出函数解析式,用待定系数法求解即可.代入中的函数解析式即可求出.详解:(1)由图象设甲的解析式为:S甲=kt,代入点,解得:k=0.5;所以甲的解析式为:S甲=0.5t;同理可设乙的解析式为:S乙=mt+b,代入点可得:解得:,所以乙的解析式为S乙(2)当t=10时,S甲=0.5×10=5(千米),S乙=10-6=4(千米),5-4=1(千米),答:甲行驶10分钟后,甲、乙两人相距1千米.点睛:考查一次函数的应用,掌握待定系数法求一次函数解析式是解题的关键.21、(1)见解析(1)1+【解析】试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AF,从而得证.(1)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.解:(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形.∴AD=BD.∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°,∴△ADC≌△BDF(ASA).∴BF=AC.∵AB=BC,BE⊥AC,∴AC=1AE.∴BF=1AE.(1)∵△ADC≌△BDF,∴DF=CD=.在Rt△CDF中,.∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+.22、证明见解析【解析】试题分析:先根据垂直平分线的性质得所以∠1=∠2,∠3=∠4;再结合平行线的性质得出∠1=∠4=∠3,即利用四条边相等的四边形是菱形即可证明试题解析:∵EF垂直平分AC,∴AO=OC,AE=CE,AF=CF,∴∠1=∠2,∠3=∠4,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠1=∠4=∠3,∴AF=AE,∴AE=EC=CF=FA,∴四边形AECF是菱形.点睛:菱形的判定:四条边相等的四边形是菱形.23、(1)详见解析;(2)48.【解析】

根据等边三角形的性质得到,再根据外角定理与等腰三角形的性质得到,故,即可证明;(2)根据含30°的直角三角形得到C的长即可求解.【详解】(1)证明:是等边三角形,是中线,,又,.又,.,(等角对等边);(2)于,,是直角三角形,,,,是等边三角形,是中线,,是等边三角形的周长.【点睛】此题主要考查等边三角形的性质,解题的关键是熟知等腰三角形的判定与性质及含30°的直角三角形的性质.24、【解析】

把x的值直接代入,再根据乘法公式进行计算即可.【详解】解:当时,【点睛】此题主要考查整式的运算,解题的关键是熟知整式的运算公式.25、(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=1试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论