广东省深圳市育才一中学初2024年八年级下册数学期末综合测试模拟试题含解析_第1页
广东省深圳市育才一中学初2024年八年级下册数学期末综合测试模拟试题含解析_第2页
广东省深圳市育才一中学初2024年八年级下册数学期末综合测试模拟试题含解析_第3页
广东省深圳市育才一中学初2024年八年级下册数学期末综合测试模拟试题含解析_第4页
广东省深圳市育才一中学初2024年八年级下册数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市育才一中学初2024年八年级下册数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知是一次函数的图像上三点,则的大小关系为()A. B. C. D.2.如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为(A.140° B.120° C.1103.边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为()A.35 B.70 C.140 D.2804.下列各组数中,不是勾股数的是()A.3,4,5 B.5,12,13 C.6,8,10 D.7,13,185.下列由左到右变形,属于因式分解的是A. B.C. D.6.下列调查适合普查的是()A.调查2011年3月份市场上西湖龙井茶的质量B.了解萧山电视台188热线的收视率情况C.网上调查萧山人民的生活幸福指数D.了解全班同学身体健康状况7.如图,将ABC绕点A顺时针旋转70°后,得到ADE,下列说法正确的是()A.点B的对应点是点E B.∠CAD=70° C.AB=DE D.∠B=∠D8.下列判定中,正确的个数有()①一组对边平行,一组对边相等的四边形是平行四边形;②对角线互相平分且相等的四边形是矩形;③对角线互相垂直的四边形是菱形;④对角线互相垂直平分且相等的四边形是正方形,A.1个 B.2个 C.3个 D.4个9.有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为()A.1B.2C.3D.410.已知一次函数.若随的增大而增大,则的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在的边长为1的小正方形组成的网格中,格点上有四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接__________________.(写出一个答案即可)12.已知,则__________.13.如图,与穿过正六边形,且,则的度数为______.14.有一组数据:2,5,5,6,7,这组数据的平均数为_____.15.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为_____分.16.=_____.17.如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.18.如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.三、解答题(共66分)19.(10分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.(1)试求点的运动速度;(2)求出此时、两点间的距离.20.(6分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.21.(6分)把一个足球垂直水平地面向上踢,时间为(秒)时该足球距离地面的高度(米)适用公式经过多少秒后足球回到地面?经过多少秒时足球距离地面的高度为米?22.(8分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.(1)若直线AB解析式为,①求点C的坐标;②求△OAC的面积.(2)如图2,作的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.23.(8分)如图,矩形中,,,为上一点,将沿翻折至,与相交于点,与相交于点,且.(1)求证:;(2)求的长度.24.(8分)如图,是等边三角形,是中线,延长至,.(1)求证:;(2)请在图中过点作交于,若,求的周长.25.(10分)某景区的门票销售分两类:一类为散客门票,价格为元/张;另一类为团体门票(一次性购买门票张以上),每张门票价格在散客门票价格的基础上打折,某班部分同学要去该景点旅游,设参加旅游人,购买门票需要元(1)如果每人分别买票,求与之间的函数关系式:(2)如果购买团体票,求与之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方式.26.(10分)如图,函数的图象与函数的图象交于点,.(1)求函数的表达式;(2)观察图象,直接写出不等式的解集;(3)若点是轴上的动点,当周长最小时,求点的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据k的值先确定函数的变化情况,再由x的大小关系判断y的大小关系.【详解】解:y随x的增大而减小又,即故答案为:A【点睛】本题考查了一次函数的性质,时,y随x的增大而增大,时,y随x的增大而减小,灵活运用这一性质是解题的关键.2、C【解析】

根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【详解】∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°,故选:C.【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.3、B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a2b+ab2=ab(a+b),代入相应的数值,得.故本题应选B.4、D【解析】

根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.【详解】A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、52+122=132,能构成直角三角形,是正整数,故是勾股数;C、62+82=102,能构成直角三角形,是正整数,故是勾股数;D、72+132≠182,不能构成直角三角形,故不是勾股数,故选D.【点睛】本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.5、A【解析】

根据因式分解是把一个整式分解成几个整式乘积的形式由此即可解答.【详解】选项A,符合因式分解的定义,本选项正确;选项B,结果不是整式的积的形式,不是因式分解,本选项错误;选项C,结果不是整式的积的形式,不是因式分解,本选项错误;选项D,结果不是整式的积的形式,因而不是因式分解,本选项错误.故选A.【点睛】本题主要考查了因式分解的定义,正确理解因式分解的定义是解题关键.6、D【解析】解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;D工作量小,没有破坏性,适合普查.故选D.7、D【解析】

根据旋转的性质逐项判断即得答案.【详解】解:因为将△ABC绕点A顺时针旋转70°后,得到△ADE,所以:A、点B的对应点是点D,不是点E,故本选项说法错误,不符合题意;B、∠CAD不是旋转角,不等于70°,故本选项说法错误,不符合题意;C、AB=AD≠DE,故本选项说法错误,不符合题意;D、∠B=∠D,故本选项说法正确,符合题意.故选:D.【点睛】本题考查了旋转的性质,属于基础题型,熟练掌握旋转的性质是关键.8、B【解析】

利用矩形的判定定理、平行四边形的判定定理、菱形的判定定理及正方形的判定定理分别判断后即可确定正确的选项.【详解】解:①一组对边平行,一组对边相等的四边形,可能是等腰梯形;故①错误;②对角线互相平分且相等的四边形是矩形;故②正确;③对角线互相垂直平分的四边形是菱形;故③错误;④对角线互相垂直平分且相等的四边形是正方形,故④正确;综上所述:②④正确,正确的个数有2个.故选:.【点睛】本题考查了矩形的判定、平行四边形的判定、菱形的判定及正方形的判定,解题的关键是能够熟练掌握有关的判定定理,难度不大.9、C【解析】因为72+242=252;122+162=202;92+402=412;42+62≠82;(32)2+(42)2≠(52)2,所以能组成直角三角形的个数为3个.故选C.本题主要考查了勾股定理的逆定理,如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,已知一个三角形三边的长,常用勾股定理的逆定理判断这个三角形是否是直角三角形.10、B【解析】

∵随的增大而增大,∴,,故选B.二、填空题(每小题3分,共24分)11、或【解析】

根据勾股定理求出AD(或BD),根据算术平方根的大小比较方法解答.【详解】由勾股定理得,AD=,3<<4,(同理可求BD=)故答案为:AD或BD.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.12、1【解析】

直接利用二次根式非负性得出a,b的值,进而得出答案.【详解】∵,∴a=−1,b=1,∴−1+1=1.故答案为:1.【点睛】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13、【解析】

根据多边形的内角和公式,求出每个内角的度数,延长EF交直线l1

于点M,利用平行线的性质把∠1搬到∠3处,利用三角形的外角计算出结果【详解】延长EF交直线l1于点M,如图所示∵ABCDEF是正六边形∴∠AFE=∠A=120°∴∠MFA=60°∵11∥12∴∠1=∠3∵∠3=∠2+∠MFA∴∠1﹣∠2=∠MFA=60°故答案为:60°【点睛】此题主要考查了平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.14、1.【解析】

把给出的这1个数据加起来,再除以数据个数1,就是此组数据的平均数.【详解】解:(2+1+1+6+7)÷1=21÷1=1.答:这组数据的平均数是1.故答案为:1.【点睛】此题主要考查了平均数的意义与求解方法,关键是把给出的这1个数据加起来,再除以数据个数1.15、100【解析】

利用加权平均数的公式直接计算.用91分,90分,81分别乘以它们的百分比,再求和即可.【详解】小惠这学期的体育成绩=91×20%+90×30%+81×10%=88.1(分).故答案为88.1.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.16、1【解析】

利用二次根式乘除法法则进行计算即可.【详解】===1,故答案为1.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.17、3.1【解析】

根据三角形的中位线定理解答即可.【详解】解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,∴.故答案为:3.1.【点睛】本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.18、【解析】

如图,作交于,连接、、作于,首先证明,因为,即可推出当、、共线时,的值最小,最小值.【详解】如图,作交于,连接、、作于.是等腰直角三角形,,,,,,,,,,,,,,当、、共线时,的值最小,最小值,在中,,,在中,.故答案为:.【点睛】本题考查了四边形的动点问题,掌握当、、共线时,的值最小,最小值是解题的关键.三、解答题(共66分)19、(1);(2)D、E两点间的距离为或1.【解析】

(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.分两种情形分别构建方程即可解决问题.(2)分两种情形利用相似三角形的性质解决问题即可.【详解】解:(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.①当时,△ADE∽△ABC,∴,解得x=,∴点E的运动速度为cm/s.②当,△ADE∽△ACB,∴,∴x=,∴点E的是的为cm/s.(2)当△ADE∽△ABC时,,∴,∴DE=,当△ADE∽△ACB时,,∴,∴DE=1,综上所述,D、E两点间的距离为或1.【点睛】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.20、(1)﹣4≤y<1;(2)点P的坐标为(2,﹣2).【解析】

利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=1,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<1.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质21、(1)秒后足球回到地面;(2)经过秒或秒足球距地面的高度为米.【解析】

(1)令,解方程即可得出答案;(2)令,解方程即可.【详解】解:令,解得:(舍),,∴秒后足球回到地面;令,解得:.即经过秒或秒,足球距地面的高度为米.【点睛】本题考查的知识点是二次函数的实际应用,根据题意分别令为不同的值解答本题.22、(1)①C(4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.(1)①由题意,解得所以C(4,4);②把代入得,,所以A点坐标为(6,0),所以;(2)由题意,在OC上截取OM=OP,连结MQ∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为12,所以AM=12÷4=1,∴AQ+PQ存在最小值,最小值为1.考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.23、(1)详见解析;(2).【解析】

(1)利用全等三角形的性质证明OD=OE,OG=OP,推出DG=PE即可解决问题.

(2)设AP=EP=x,则PD=GE=6-x,DG=x,可得CG=8-x,BG=8-(6-x)=2+x,在△BCG中根据勾股定理得:BC2+CG2=BG2,构建方程即可解决问题.【详解】(1)证明:四边形是矩形,,根据题意得:,,,,在和中,,,,,,即,;(2)如图所示,由(1)得:,,又,设,则,,,,在中根据勾股定理得:,即,解得:,.故答案为:(1)详见解析;(2).【点睛】本题考查矩形与翻折变换,全等三角形的判定和性质,勾股定理,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题.24、(1)详见解析;(2)48.【解析】

根据等边三角形的性质得到,再根据外角定理与等腰三角形的性质得到,故,即可证明;(2)根据含30°的直角三角形得到C的长即可求解.【详解】(1)证明:是等边三角形,是中线,,又,.又,.,(等角对等边);(2)于,,是直角三角形,,,,是等边三角形,是中线,,是等边三角形的周长.【点睛】此题主要考查等边三角形的性质,解题的关键是熟知等腰三角形的判定与性质及含30°的直角三角形的性质.25、(1);(2)y=32x(x⩾10);(3)8人以下买散客票;8人以上买团

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论