2024年广东茂名市直属学校八年级下册数学期末学业质量监测试题含解析_第1页
2024年广东茂名市直属学校八年级下册数学期末学业质量监测试题含解析_第2页
2024年广东茂名市直属学校八年级下册数学期末学业质量监测试题含解析_第3页
2024年广东茂名市直属学校八年级下册数学期末学业质量监测试题含解析_第4页
2024年广东茂名市直属学校八年级下册数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东茂名市直属学校八年级下册数学期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图所示,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为5,则k的值为()A.5 B.﹣5 C.10 D.﹣102.下列多项式中,能用公式法分解因式的是()A. B. C. D.3.在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,则斜边AB的长是()A.6cm B.8c C.13cm D.15cm4.在直角坐标系中,线段是由线段平移得到的,已知则的坐标为()A. B. C. D.5.如图,丝带重叠的部分一定是()A.菱形 B.矩形 C.正方形 D.都有可能6.某小区居民利用“健步行APP”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数单位:千步,并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:小文此次一共调查了200位小区居民;行走步数为千步的人数超过调查总人数的一半;行走步数为千步的人数为50人;行走步数为千步的扇形圆心角是.根据统计图提供的信息,上述推断合理的是()A. B. C. D.7.下列数据中不能作为直角三角形的三边长的是()A.1、 B. C.5、12、13 D.1、2、38.如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为()cmA. B. C. D.9.要使式子有意义,则实数的取值范围是()A. B. C. D.10.如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为()A.πcm2 B.4cm2 C.cm2 D.cm211.如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为().A. B. C. D.12.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=2,则△ABF的周长为()A.43 B.83 C.6+3 D.6+23二、填空题(每题4分,共24分)13.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是.14.一次函数(k,b为常数,)的图象如图所示,根据图象信息可得到关于x的方程的解为__________.15.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)16.如果多边形的每个内角都等于,则它的边数为______.17.将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________18.当k=_____时,100x2﹣kxy+49y2是一个完全平方式.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,C在y轴上,反比例函数的图象分别交BC,AB于E,F,已知,.(1)求k的值;(2)若,求点E的坐标.20.(8分)已知一次函数图象经过点(3,5),(–4,–9)两点.(1)求一次函数解析式.(2)求图象和坐标轴围成三角形面积.21.(8分)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点。(1)求函数的图像上和谐点的坐标;(2)若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点(,),当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围.22.(10分)如图,在Rt△ABC中,∠C=90°.(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连结CD,则DE=_,CD=_.23.(10分)解不等式组.24.(10分)有这样一个问题:探究函数的图象与性质.小亮根据学习函数的经验,对函数的图象与性质进行了探究。下面是小亮的探究过程,请补充完整:(1)函数中自变量x的取值范围是_________.(2)下表是y与x的几组对应值.x…-3-2-102345…y…---4-5-7m-1-2--…求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.25.(12分)计算(1)5+﹣+(2)+﹣()0(3)﹣+26.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】

连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图,轴,,,而,,,.故选D.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2、D【解析】

利用平方差公式及完全平方公式的结构特征判断即可.【详解】解:=(n+m)(n−m),故选D.【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.3、C【解析】

根据勾股定理求得斜边的长.【详解】解:∵Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,∴AB==13cm,故选:C.【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方以及三角形面积公式的综合运用.4、B【解析】

根据点A和点A′的坐标判断出平移方式,根据平移方式可得点的坐标.【详解】解:∵点A的坐标为(−2,3),A′的坐标为(3,4),∴线段AB向上平移1个单位,向右平移5个单位得到线段A′B′,∵点B的坐标为(−3,1),∴点B′的坐标为(2,2),故选:B.【点睛】此题主要考查了坐标与图形变化—平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5、A【解析】

首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.∴BC=CD,∴四边形ABCD是菱形.故选:A.【点睛】本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.6、C【解析】

由千步的人数及其所占百分比可判断;由行走步数为千步的人数为70,未超过调查总人数的一半可判断;总人数乘以千步的人数所占比例可判断;用乘以千步人数所占比例可判断.【详解】小文此次一共调查了位小区居民,正确;行走步数为千步的人数为70,未超过调查总人数的一半,错误;行走步数为千步的人数为人,正确;行走步数为千步的扇形圆心角是,正确,故选C.【点睛】本题考查了频数率直方图,读懂统计图表,从中获得必要的信息是解题的关键.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7、D【解析】

根据勾股定理的逆定理进行计算分析,从而得到答案.【详解】A、12+()2=()2,能构成直角三角形,故选项错误;B、()2+()2=()2,能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项错误;D、12+22≠32,不能构成直角三角形,故选项正确,故选D.【点睛】本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.8、D【解析】

作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.【详解】如下图,连接BD,角AC于点E,∵四边形ABCD为菱形,∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,在Rt△AEB中,AE=3cm,∴AB==3=2故选D.【点睛】本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.9、C【解析】

根据二次根式的性质,被开方数大于等于0,就可以求解.【详解】根据题意得:x−2⩾0,解得x⩾2.故选:C【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其性质10、B【解析】

根据平移后阴影部分的面积恰好是长1cm,宽为1cm的矩形,再根据矩形的面积公式即可得出结论.【详解】解:∵平移后阴影部分的面积恰好是长为1cm,宽为1cm的矩形,∴S阴影=1×1=4cm1.故选B.【点睛】本题考查的是图形平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.11、D【解析】

首先由,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【详解】解:设△ABP中AB边上的高是h.∵,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为.故选D.【点睛】本题考查了轴对称−最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.12、D【解析】

先利用直角三角形斜边中线性质求出AB,再利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【详解】∵AF⊥BC,点D是边AB的中点,∴AB=2DF=4,∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=12AB=2由勾股定理得,BF=AB则△ABF的周长=AB+AF+BF=4+2+23=6+23,故选:D.【点睛】此题考查三角形中位线定理,含30度角的直角三角形,直角三角形斜边上的中线,解题关键在于利用30角所对的直角边等于斜边的一半求解.二、填空题(每题4分,共24分)13、34【解析】试题解析:解:设这7个数的中位数是x,根据题意可得:,解方程可得:x=34.考点:中位数、平均数点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.14、x=1【解析】

直接根据图象找到y=kx+b=4的自变量的值即可.【详解】观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(1,4),所以关于x的方程kx+b=4的解为x=1,故答案为:x=1.【点睛】本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键.15、②①④⑤③【解析】根据统计调查的一般过程:①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为:②①④⑤③.16、1【解析】

先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.17、【解析】

根据图象平移的规律,左加右减,上加下减,即可得到答案.【详解】解:由题意得,y=-2x+4=-2(x+2)+4,即y=-2x,故答案为:y=-2x.【点睛】本题主要考查了一次函数图象与几何变换,掌握一次函数图象是解题的关键.18、±1.【解析】

利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a±b)2=a2±2ab+b2.【详解】∵100x2﹣kxy+49y2是一个完全平方式,∴k=±1.故答案为:±1.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.三、解答题(共78分)19、(1)6;(2).【解析】

(1),,的坐标为,点F在反比例函数的图象上,,即k的值为6;设、,则,.由,得,可求E的坐标.【详解】解:,,的坐标为,点F在反比例函数的图象上,,即k的值为6;设、,的坐标为,,.,,解得或舍去.,.【点睛】本题考核知识点:反比例函数性质.解题关键点:熟记反比例性质.20、y=2x-1s=解:(1)设一次函数的解析式是y=kx+b.根据题意得:解得:则直线的解析式是:y=2x-1.(2)在直线y=2x+1中,令x=0,解得y=1;令y=0,解得:x=-则求图象和坐标轴围成三角形面积为××1=【解析】(1)利用待定系数法即可求得函数的解析式;(2)求得函数与坐标轴的交点,即可求得三角形的面积.21、(1);(2)2≤m≤4【解析】

(1)根据和谐点的横坐标与纵坐标相同,设和谐点的坐标为(a,a),代入可得关于a的方程,解方程可得答案.

(2)根据和谐点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32-4ac=0,即4ac=9,方程的根为=,从而求得a=-1,c=−,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.【详解】(1)设和谐点的坐标为(a,a),则a=-2a+1解得:a=,∴函数的图像上和谐点的坐标为.(2)令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为,解得a=﹣1,c=.故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,如下图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,∴2≤m≤4.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,正确理解和谐点的概念是解题的关键.22、(1)作图见解析;(2)3,1.【解析】

(1)作边AB的中垂线,交AB于D,过点D作DE⊥BC,垂足为E,连接DE即可.(2)根据三角形的中位线定理直接得出DE的长,再根据直角三角形斜边上的中线等于斜边的一半,求出CD.【详解】(1)如图.(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=1,故答案为3,1.【点睛】本题考查了基本作图,以及三角形的中位线定理、勾股定理,是基础知识要熟练掌握.23、【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.【详解】解:由(1)得:由(2)得:,所以,原不等式组的解为:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24、(1);(2)1;(2)见解析;(4)y=-2.【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论