山东省临沂商城外国语学校2024年八年级下册数学期末联考模拟试题含解析_第1页
山东省临沂商城外国语学校2024年八年级下册数学期末联考模拟试题含解析_第2页
山东省临沂商城外国语学校2024年八年级下册数学期末联考模拟试题含解析_第3页
山东省临沂商城外国语学校2024年八年级下册数学期末联考模拟试题含解析_第4页
山东省临沂商城外国语学校2024年八年级下册数学期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂商城外国语学校2024年八年级下册数学期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是()A.17B.16C.15D.142.如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为()A. B.3 C.6 D.93.如图,若一次函数与的交点坐标为,则的解集为()A. B. C. D.4.要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<5.函数y中,自变量x的取值范围是()A.x=-5 B.x≠-5 C.x=0 D.x≠06.已知关于x的一元二次方程x2﹣2kx+6=0有两个相等的实数根,则k的值为()A.±2 B.± C.2或3 D.或7.如图,已知四边形是平行四边形,下列结论不正确的是()A.当时,它是矩形 B.当时,它是菱形C.当时,它是菱形 D.当时,它是正方形8.下列分解因式正确的是A. B.C. D.9.若点A(3,2)与B(-3,m)关于原点对称,则m的值是()A.3 B.-3 C.2 D.-210.下列多项式,能用平方差公式分解的是A. B.C. D.二、填空题(每小题3分,共24分)11.已知关于的方程有解,则的值为____________.12.若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.13.如图,正比例函数y=ax的图象与反比例函数y=kx的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________14.4的算术平方根是.15.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.16.如图,矩形ABCD中,对角线AC,BD相交于点O,若再补充一个条件就能使矩形ABCD成为正方形,则这个条件是(只需填一个条件即可).17.若关于x的分式方程有增根,则m的值为_______.18.一个有进水管与出水管的容器,从某时刻开始内只进水不出水,在随后的内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量单位:)与时间(单位)之间的关系如图所示:则时容器内的水量为__________.三、解答题(共66分)19.(10分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.20.(6分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.21.(6分)已知三个实数x,y,z满足,求的值.22.(8分)如图,直线y=x+m与x轴交于点A(-3,0),直线y=-x+2与x轴、y轴分别交于B、C两点,并与直线y=x+m相交于点D,(1)点D的坐标为;(2)求四边形AOCD的面积;(3)若点P为x轴上一动点,当PD+PC的值最小时,求点P的坐标.23.(8分)数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,ΔBMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?(3)设矩形ABCD的边AB=2   ,   BC=4,并建立如图3所示的直角坐标系.设直线BM'为y=kx,当∠M'BC=60°时,求k的值.此时,将ΔABM'沿BM'折叠,点A`是否落在EF上(E、24.(8分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.25.(10分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.(1)求,两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.26.(10分)直线MN与x轴、y轴分别交于点M、N,并且经过第二、三、四象限,与反比例函数y=(k<0)的图象交于点A、B,过A、B两点分别向x轴、y轴作垂线,垂足为C、D、E、F,AD与BF交于G点.(1)比较大小:S矩形ACODS矩形BEOF(填“>,=,<”).(2)求证:①AG•GE=BF•BG;②AM=BN;(3)若直线AB的解析式为y=﹣2x﹣2,且AB=3MN,则k的值为.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据中位数的定义:将一组数据从小到大(或从大到小)排列,最中间的数据(或最中间两个数据)的平均数,就是这组数据的中位数,即可得出答案.【详解】把这组数据按照从小到大的顺序排列:14,15,15,16,16,16,17,最中间的数据是16,所以这组数据的中位数是16.故选B.【点睛】本题考查了中位数的定义.熟练应用中位数的定义来找出一组数据的中位数是解题的关键.2、C【解析】

首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠1,根据角平分线的定义推知∠1=∠1,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.即可得出结论.【详解】解:如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠1.又∵AF平分∠CAB,∴∠1=∠1,∴∠1=∠2,∴AD=DF=1,∴AC=2AD=2.故选C.【点睛】本题考查了三角形中位线定理,等腰三角形的判定.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.3、A【解析】

根据两函数图象的上下位置关系结合交点的横坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当x<3时,直线在直线的下方,

∴不等式的解集为.

故选:A.【点睛】本题考查了一次函数与一元一次不等式以及在数轴上表示不等式的解集,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.4、B【解析】

二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5、B【解析】

根据分式的意义的条件:分母不等于0,可以求出x的范围.【详解】解:根据题意得:x+1≠0,

解得:x≠-1.

故选B.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6、B【解析】

利用判别式的意义得到△=(﹣2k)2﹣4×6=0,然后解关于k的方程即可.【详解】解:根据题意得△=(﹣2k)2﹣4×6=0,解得k=±.故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7、D【解析】

根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.【详解】A.正确,对角线相等的平行四边形是矩形;B.正确,对角线垂直的平行四边形是菱形;C.正确,有一组邻边相等的平行四边形叫做菱形;D.不正确,有一个角是直角的平行四边形叫做矩形。故选D【点睛】此题考查平行四边形的性质,矩形的判定,正方形的判定,解题关键在于掌握判定法则8、C【解析】

根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A.,分解因式不正确;B.,分解因式不正确;C.,分解因式正确;D.2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.9、D【解析】

根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】∵点A(3,2)与B(-3,m)关于原点对称,∴m=-2,故选D.【点睛】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.10、C【解析】

能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【详解】解:A、不能用平方差公式进行分解,故此选项错误;B、不能用平方差公式进行分解,故此选项错误;C、能用平方差公式进行分解,故此选项正确;D、不能用平方差公式进行分解,故此选项错误;故选C.【点睛】此题主要考查了公式法分解因式,关键是掌握能用平方差公式分解的多项式特点.二、填空题(每小题3分,共24分)11、1【解析】

分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.【详解】去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.故答案为:1.【点睛】本题考查了分式方程的解,始终注意分母不为0这个条件.12、<<【解析】

分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.【详解】解:当x=1时,=-2×1=-2;当x=-1时,=-2×(-1)=2;当x=-2时,=-2×(-2)=4;∵-2<2<4∴<<故答案为:<<.【点睛】本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.13、(2,﹣3)【解析】试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.解:根据题意,知点A与B关于原点对称,∵点A的坐标是(﹣2,3),∴B点的坐标为(2,﹣3).故答案是:(2,﹣3).点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.14、1.【解析】试题分析:∵,∴4算术平方根为1.故答案为1.考点:算术平方根.15、0.1【解析】

利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,

∴第1组到第4组的频率是:(5+7+11+13)0.5625∵第5组到第7组的频率是0.125,第8组的频率是:1-0.5625-0.125=0.1故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.16、AB=BC(答案不唯一).【解析】

根据正方形的判定添加条件即可.【详解】解:添加的条件可以是AB=BC.理由如下:

∵四边形ABCD是矩形,AB=BC,

∴四边形ABCD是正方形.

故答案为AB=BC(答案不唯一).【点睛】本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.17、1【解析】

增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.【详解】解:方程两边都乘,得∵原方程有增根,∴最简公分母,解得,当时,故m的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18、1【解析】

利用待定系数法求后8分钟的解析式,再求函数值.【详解】解:根据题意知:后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系,设y=kx+b

当x=4,y=20

当x=12,y=30

∴∴

∴后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系y=1.1x+15

当x=8时,y=1.

故答案为:1.【点睛】本题考查利用待定系数法求一次函数解析式,并根据自变量取值,再求函数值.求出解析式是解题关键.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】

(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.20、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.【解析】

(1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.【详解】(1)∵∠ACB=90°,AC=8,BC=1,∴AB=,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即:8×1=10×CD,∴CD=;(2)在Rt△ADC中,AD=,BD=AB-AD=10-=,当点N在线段CD上时,如图1所示:∵矩形PQMN,PQ总保持与AC垂直,∴PN∥AC,∴∠NPD=∠CAD,∵∠PDN=∠ADC,∴△PDN∽△ADC,∴,即:,解得:PD=,∴t=AD-PD=,当点Q在线段CD上时,如图2所示:∵PQ总保持与AC垂直,∴PQ∥BC,△DPQ∽△DBC,∴,即:,解得:DP=,∴t=AD+DP=,∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;(3)当Q在AC上时,如图3所示:∵PQ总保持与AC垂直,∴PQ∥BC,△APQ∽△ABC,∴,即:,解得:AP=,当0<t<时,重叠部分是矩形PHYN,如图4所示:∵PQ∥BC,∴△APH∽△ABC,∴,即:,∴PH=,∴S=PH•PN=;当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.当<t≤时,如图5中重叠部分是五边形PQMJI,S=S矩形PNMQ-S△JIN=2-•(t-)[1-(-t)•]=-t2+t-.【点评】本题属于四边形综合题,考查了解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.21、4【解析】

求得到,然后求出,分子分母同除以xyz得,即可求解。【详解】解:∵∴∴分子分母同除以xyz得=4【点睛】本题考查了条件代数式求值问题,关键在于观察条件和所求代数式直接的联系;本题的联系在于倒数的应用和分式基本性质的应用。22、(1)(-1,3);(2);(3)(-,0).【解析】

(1)把A、B的坐标代入函数解析式,求出函数解析式,即可求出D点的坐标;(2)根据面积公式求出面积即可;(3)找出P点的位置,求出直线EC的解析式,即可求出PD点的坐标.【详解】解:(1)把A(-3,0)代入y=x+m,得m=,∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),解方程组得:,∴D点坐标为(-1,3);故答案为(-1,3);(2)∵直线y=-x+2与x轴、y轴分别交于B、C两点,∴B点坐标为(2,0),C(0,2),∴四边形AOCD的面积=S△DAB-S△COB=×5×3-×2×2=;(3)作D关于x轴的对称点E,连接CE,交x轴于P,此时PD+PC的值最小,∵D点坐标为(-1,3),∴E点的坐标为(-1,-3),设直线CE的解析式为y=ax+b,把E、C的坐标代入得:解得:a=5,b=2,即直线CE的解析式为y=5x+2,当y=0时,x=-,即P点的坐标为(-,0).【点睛】本题考查了函数图象上点的坐标特征,轴对称-最短路线问题等知识点,能综合运用知识点进行计算是解此题的关键.23、(1)ΔBMP是等边三角形,见解析;(2)当a⩽32b时,在矩形上能剪出这样的等边△BMP;(3)k=3,点A'落在【解析】

(1)连结AN,根据折叠的性质得到ΔABN为等边三角形,然后利用三角形内角和定理即可解答.(2)由作图可得P在BC上,所以BC≥BP;(3)求出M'(233,2),再把M`代入解析式,即可求出k的值,过A'作A'H⊥BC交BC于H,利用折叠的性质得到ΔA'BM'   ≌ΔABM'【详解】解:(1)ΔBMP是等边三角形,理由如下:连结AN,∵EF垂直平分AB∴AN=BN.由折叠知:AB=BN∴AN=AB=BN∴ΔABN为等边三角形∴∠ABN=60°∴∠PBN=30°又∵∠ABM=∠NBM=30°,∠BNM=∠A=90°∴∠BPN=60°∴∠BMP=60°∴∠MBP=∠BMP=∠BPM=60°∴ΔBMP为等边三角形.(2)要在矩形纸片ABCD上剪出等边△BMP,则BC⩾BP,在Rt△BNP中,BN=BA=a,∠PBN=30°,∴BP=acos30°∴b⩾acos30°∴a⩽32∴当a⩽32b时,在矩形上能剪出这样的等边△(3)∵∠M'BC=60°∴∠ABM'=90°-60°=30°∴AM'=∴M'(把M'(233,2)解得k=3将ΔABM'沿BM'折叠,点A'落在EF上,理由如下:设ΔABM'沿BM'折叠后,点A落在矩形ABCD内的点为A',过A'作A'H⊥BC交BC于H∵ΔA'BM'   ∴∠A'BM'=∠ABM'=30°∴∠A'BH=∠M'BH-∠A'BM'=30°在RtΔA'BH中,A'H=1∴A'(∴A'落在EF上.【点睛】此题考查等边三角形的判定与性质,折叠的性质,全等三角形的性质,解题关键在于作辅助线和利用折叠的性质进行解答.24、BD=2;CD=【解析】

过点D作DE⊥BC于E,根据等腰直角三角形的性质求出AD、BD,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE,利用△CDE是等腰直角三角形,即可求出CD的长.【详解】解:如图,过点D作DE⊥BC于E,∵∠A=90°,AD=AB=,∴由勾股定理可得:BD=,∵∠CBD=30°,DEBE,∴DE=BD=×2=1,又∵Rt△CDE中,∠DEC=90°,∠C=45°,∴CE=DE=1,∴由勾股定理可得CD=.【点睛】本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD分成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论