河北省沧州泊头市第四中学2024届八年级下册数学期末学业质量监测试题含解析_第1页
河北省沧州泊头市第四中学2024届八年级下册数学期末学业质量监测试题含解析_第2页
河北省沧州泊头市第四中学2024届八年级下册数学期末学业质量监测试题含解析_第3页
河北省沧州泊头市第四中学2024届八年级下册数学期末学业质量监测试题含解析_第4页
河北省沧州泊头市第四中学2024届八年级下册数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州泊头市第四中学2024届八年级下册数学期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一次函数在平面直角坐标系内的图像如图所示,则k和b的取值范围是()A., B., C., D.,2.如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有()A.①②③④ B.②③ C.②③④ D.②④3.点P是△ABC内一点,且P到△ABC的三边距离相等,则P是△ABC哪三条线的交点()A.边的垂直平分线 B.角平分线C.高线 D.中位线4.点P(2,3)到y轴的距离是()A.3 B.2 C.1 D.05.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20C.15 D.256.如图,在中,点是对角线,的交点,点是边的中点,且,则的长为()A. B. C. D.7.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.8.若一次函数的函数值y随x的值增大而增大,且此函数的图象不经过第二象限,则k的取值范围是()A. B. C. D.或9.如图,在菱形中,对角线、相交于点,,,过作的平行线交的延长线于点,则的面积为()A.22 B.24 C.48 D.4410.函数y=中,自变量x的取值范围在数轴上表示正确的是()A. B. C. D.11.在平面直角坐标系中,将正比例函数(>0)的图象向上平移一个单位长度,那么平移后的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知△ABC的三边长分别是a,b,c,且关于x的一元二次方程有两个相等的实数根,则可推断△ABC一定是().A.等腰三角形 B.等边三角形 C.直角三角形 D.钝角三角形二、填空题(每题4分,共24分)13.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.14.如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=1.在BC上找点G,使EG=AF,则BG的长是___________15.我市某一周每天的最低气温统计如下(单位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,则这组数据的众数为__________.16.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.17.在▱ABCD中,对角线AC和BD交于点O,AB=2,AC=6,BD=8,那么△COD的周长为_____.18.已知,当=-1时,函数值为_____;三、解答题(共78分)19.(8分)已知一次函数y=(3-k)x-2k2+18.(1)当k为何值时,它的图象经过原点?(2)当k为何值时,它的图象经过点(0,-2)?(3)当k为何值时,它的图象平行于直线y=-x?(4)当k为何值时,y随x增大而减小?20.(8分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.21.(8分)如果一组数据﹣1,0,2,3,x的极差为6(1)求x的值;(2)求这组数据的平均数.22.(10分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上,继续航行后到达处,此时测得灯塔在北偏东30°方向上.(1)求的度数;(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(10分)一个多边形的外角和是内角和的,求这个多边形的边数.24.(10分)(1)计算:(2)25.(12分)已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B(,).(1)求这两个函数的表达式;(2)观察图象,当>0时,直接写出>时自变量的取值范围;(3)如果点C与点A关于轴对称,求△ABC的面积.26.先化简再求值,其中x=-1.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据一次函数的图象经过的象限与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、三象限,

∴k>0,b>0.

故选A.【点睛】本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.2、C【解析】

利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△AFB≌△ADC,∴∠BAF=∠CAD,BF=CD,故②④正确;由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE故③正确;无法判断BE=CD,故①错误.故选:C.【点睛】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.3、B【解析】

根据到角的两边的距离相等的点在角的平分线上解答.【详解】∵P到△ABC的三边距离相等,∴点P在△ABC的三条角平分线上,∴P是△ABC三条角平分线的交点,故选:B.【点睛】本题考查的是角平分线的性质,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.4、B【解析】

根据点的到y轴的距离等于横坐标的绝对值解答.【详解】解:点P(1,3)到y轴的距离为1.故选:B.【点睛】本题考查了点的坐标,熟记点的到y轴的距离等于横坐标的绝对值,到x轴的距离等于纵坐标的绝对值是解题的关键.5、C【解析】

根据平行四边形的性质求解即可.【详解】∵四边形ABCD是平行四边形∴∵AC+BD=20∴∴△AOB的周长故答案为:C.【点睛】本题考查了三角形的周长问题,掌握平行四边形的性质是解题的关键.6、C【解析】

先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=10,,故选:C.【点睛】本题考查了平行四边形的性质及中位线定理的知识,解答本题的关键是根据平行四边形的性质判断出点O是BD中点,得出OE是△DBC的中位线.7、A【解析】

先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,

∴共比赛场数为,

故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.8、C【解析】

先根据函数y随x的增大而增大可确定1−2k>1,再由函数的图象不经过第二象限可得图象与y轴的交点在y轴的负半轴上或原点,即−k≤1,进而可求出k的取值范围.【详解】解:∵一次函数y=(1−2k)x−k的函数值y随x的增大而增大,且此函数的图象不经过第二象限,∴1−2k>1,且−k≤1,解得,故选:C.【点睛】本题主要考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1;一次函数y=kx+b图象与y轴的负半轴相交⇔b<1;一次函数y=kx+b图象过原点⇔b=1.9、B【解析】

先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,BO=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=.故答案为:B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.10、B【解析】

根据函数y=可得出x-1≥0,再解出一元一次不等式即可.【详解】由题意得,x-1≥0,

解得x≥1.

在数轴上表示如下:

故选B.【点睛】本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.11、D【解析】试题分析:将正比例函数y=kx(k>0)的图象向上平移一个单位得到y=kx+1(k>0),∵k>0,b=1>0,∴图象经过第一、二、三象限,不经过第四象限.故选D.考点:一次函数图象与几何变换.12、C【解析】

根据判别式的意义得到,然后根据勾股定理的逆定理判断三角形为直角三角形.【详解】根据题意得:,所以,所以为直角三角形,.故选:.【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.也考查了勾股定理的逆定理.二、填空题(每题4分,共24分)13、1.【解析】

作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=1,即NQ=1,∴MP+NP=QP+NP=QN=1,故答案为1【点睛】本题考查轴对称-最短路线问题;菱形的性质.14、1或2【解析】

过E作EH⊥BC于H,取,根据平行线分线段成比例定理得:BH=CH=3,证明Rt△ADF≌Rt△EHG,得GH=DF=1,可得BG的长,再运用等腰三角形的性质可得BG及的长.【详解】解:如图:过E作EH⊥BC于H,取,则AB∥EH∥CD,∵E是AD的中点,∴BH=CH=3,∵四边形ABCD是正方形,∴AD=CD=EH,∠D=∠EHG=90°,∵EG=AF,∴Rt△ADF≌Rt△EHG(HL),∴GH=DF=1,∴BG=BH−GH=3−1=1;∵∴∴故答案为:1或2.【点睛】本题主要考查了全等三角形的判定与性质,正方形的性质,掌握全等三角形的判定与性质,正方形的性质是解题的关键.15、-1【解析】

众数是一组数据中出现次数最多的数据.【详解】观察﹣1,﹣4,6,0,﹣1,1,﹣1其中﹣1出现的次数最多,故答案为:.【点睛】本题考查了众数的概念,解题的关键在于对众数的理解.16、.【解析】

试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.17、1【解析】

△COD的周长=OC+OD+CD,根据平行四边形的对角线互相平分的性质求得OC与OD的长,根据平行四边形的对边相等可得CD=AB=2,进而求得答案【详解】解:∵四边形ABCD是平行四边形,∴OC=OA=AC=3,OD=OB=BD=4,CD=AB=2,∴△COD的周长=OC+OD+CD=3+4+2=1.故答案为1.【点睛】此题考查平行四边形的性质,解题关键在于画出图形18、-1【解析】

将x=-1,代入y=2x+1中进行计算即可;【详解】将x=-1代入y=2x+1,得y=-1;【点睛】此题考查求函数值,解题的关键是将x的值代入进行计算;三、解答题(共78分)19、(1)见解析;(2)k=±;(1)k=4;(4)k>1.【解析】【分析】(1)将点(0,0)代入解析式y=(1-k)x-2k2+18;(2)将点(0,-2)代入解析式y=(1-k)x-2k2+18;(1)由图像平行于直线y=-x,得两个函数的一次项系数相等,即1-k=-1;(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0.【详解】解:(1)∵一次函数的图像经过原点,∴点(0,0)在一次函数的图像上,将点(0,0)代入解析式得:0=-2k2+18,解得:k=±1.又∵y=(1-k)x-2k2+18是一次函数,∴1-k≠0,∴k≠1.∴k=-1.(2)∵图像经过点(0,-2),∴点(0,-2)满足函数解析式,代入得:-2=-2k2+18,解得:k=±.(1)∵图像平行于直线y=-x,∴两个函数的一次项系数相等,即1-k=-1.解得k=4.(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0,即1-k<0,解得k>1.【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.20、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴yD=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(−6,−2)、D(10,6).【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.21、(1)x=1或x=-3;(2)或【解析】

(1)根据极差的定义求解.分两种情况:x为最大值或最小值.(2)根据平均数的公式求解即可。【详解】解:(1)∵3+1=4<6,∴x为最大值或最小值.当x为最大值时,有x+1=6,解得x=1.当x为最小值时,3﹣x=6,解得x=﹣3;(2)当x为1时,平均数为.当x为﹣3时,平均数为.【点睛】本题考查了极差的定义和算术平均数,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.22、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析【解析】

(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;

(2)作CD⊥AB于D.求出CD的值即可判定;【详解】解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°

∴∠ACB=180°-∠CBA-∠CAB=30°;

(2)由(1)可知∠ACB=∠CAB=30°,

∴AB=CB=30×=20(海里),∠CBD=60°,

过点C作CD⊥AB于点D,在Rt△CBD中,

CD=BCsin60°=10(海里)

10>15

∴海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论