2024届广东省惠州市惠州一中学初二下期数期八年级数学第二学期期末学业水平测试试题含解析_第1页
2024届广东省惠州市惠州一中学初二下期数期八年级数学第二学期期末学业水平测试试题含解析_第2页
2024届广东省惠州市惠州一中学初二下期数期八年级数学第二学期期末学业水平测试试题含解析_第3页
2024届广东省惠州市惠州一中学初二下期数期八年级数学第二学期期末学业水平测试试题含解析_第4页
2024届广东省惠州市惠州一中学初二下期数期八年级数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省惠州市惠州一中学初二下期数期八年级数学第二学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.设正比例函数的图象经过点,且的值随x值的增大而减小,则()A.2 B.-2 C.4 D.-42.已知实数a、b,若a>b,则下列结论正确的是()A.a+3<b+3 B.a-4<b-4 C.2a>2b D.3.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.64.▱ABCD中,对角线AC与BD相交于点E,将△ABC沿AC所在直线翻折至△AB′C,若点B的落点记为B′,连接B′D、B′C,其中B′C与AD相交于点G.①△AGC是等腰三角形;②△B′ED是等腰三角形;③△B′GD是等腰三角形;④AC∥B′D;⑤若∠AEB=45°,BD=2,则DB′的长为;其中正确的有()个.A.2 B.3 C.4 D.55.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为()A. B.5 C.3 D.6.已知反比例函数,则下列结论正确的是()A.其图象分别位于第一、三象限B.当时,随的增大而减小C.若点在它的图象上,则点也在它的图象上D.若点都在该函数图象上,且,则7.如图,在平行四边形ABCD中,E是边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的度数为A. B. C. D.8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40° B.36° C.30° D.25°9.等边三角形的边长为2,则它的面积为A. B. C. D.110.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠AEB等于()A.18° B.36° C.72° D.108°二、填空题(每小题3分,共24分)11.如图,平行四边形ABCD的面积为32,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交BC,AD于点E、F,若AF=3DF,则图中阴影部分的面积等于_____12.若最简二次根式与可以合并,则a=____.13.如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)14.若关于的一元二次方程的常数项为,则的值是__________.15.如图,在中,已知,则_______.16.已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:(小时)…(升)…由此可知,汽车行驶了__________小时,油箱中的剩余油量为升.17.如图,将一块边长为12cm正方形纸片ABCD的顶点A折叠至DC边上的E点,使DE=5,折痕为PQ,则PQ的长为_________cm.18.若一次函数y=kx+1(k为常数,0)的图象经过第一、二、四象限,则k的取值范围是_______________.三、解答题(共66分)19.(10分)操作与证明:如图,把一个含角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AC、AE、其中AC与EF交于点N,取AF中点M,连接MD、MN.求证:是等腰三角形;在的条件下,请判断MD,MN的数量关系和位置关系,并给出证明.20.(6分)列方程解应用题:从甲地到乙地有两条公路,一辆私家车在高速公路上的平均速度比在普通公路上的平均速度高,行驶千米的高速公路比行驶同等长度的普通公路节约分钟,求该汽车在高速公路上的平均速度.21.(6分)计算:(1)

;(2)22.(8分)阅读下面材料:数学课上,老师出示了这祥一个问题:如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现点H是线段EF的中点”。小吉:“∠BFE=75°,说明图形中隐含着特殊角”;小亮:“通过观察和度量,发现CO⊥BD”;小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.请回答:(1)证明FH=EH;(2)求的值;(3)若AB=4.MH=,则GE的长度为_____________.23.(8分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.(1)求该超市粽子与咸鸭蛋的价格各是多少元?(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?24.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点坐标为.(1)画出关于轴对称的;(2)画出将绕原点逆时针旋转90°所得的;(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.25.(10分)如果一组数据1,2,2,4,的平均数为1.(1)求的值;(2)求这组数据的众数.26.(10分)某校八年级为庆祝中华人民共和国建国70周年,准备举行唱红歌、颂经典活动.八年级(2)班积极准备,需购买文件夹若干,某文具店有甲、乙两种文件夹.(1)若该班只购买甲种文件夹,且购买甲种文件夹的花费(单位:元)与其购买数量(单位:件)满足一次函数关系,若购买20个,需花费180元;若购买30个,需花费260元.该班若需购买甲种文件夹60件,求需花费多少元?(2)若该班购买甲,乙两种文件夹,那么甲种文件夹的单价比乙种文件夹的单价贵2元,若用240元购买甲种文件夹的数量与用180元购买乙种文件夹的数量相同.求该文具店甲乙两种文件夹的单价分别是多少元?

参考答案一、选择题(每小题3分,共30分)1、B【解析】

先把点带入得,解得m=,再根据正比例函数的增减性判断m的值.【详解】因为的值随x值的增大而减小,所以m<0即m=-1.故选B.考点:曲线上的点与方程、正比例函数的性质.2、C【解析】

根据不等式的性质逐个判断即可.(1不等式两边同时加或减去同一个整式,不等号方向不变;2不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;3不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.)【详解】根据a>b可得A错误,a+3>b+3B错误,a-4>b-4C正确.D错误,故选C.【点睛】本题主要考查不等式的性质,属于基本知识,应当熟练掌握.3、A【解析】

作DE⊥AB于E,∵AB=10,S△ABD=15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.4、D【解析】

利用平行四边形的性质、翻折不变性一一判断即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴BE=DE,AD∥BC,AD=BC,∴∠GAC=∠ACB,由翻折可知:BE=EB′=DE,∠ACB=∠ACG,CB=CB′,∴∠GAC=∠ACG,∴△AGC,△B′ED是等腰三角形,故①②正确,∵AB′=AB=DC,CB′=AD,DB′=B′D,∴△ADB′≌△CB′D,∴∠ADB′=∠CB′D,∴GD=GB′,∴△B′GD是等腰三角形,故③正确,∵∠GAC=∠GCA,∠AGC=∠DGB′,∴∠GAC=∠GDB′,∴AC∥DB′,故④正确.∵∠AEB=45°,BD=2,∴∠BEB′=∠DEB′=90°,∵DE=EB′=1,∴DB′=,故⑤正确.故选:D.【点睛】本题考查翻折变换、等腰三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、B【解析】

过D点作直线EF与平行线垂直,与l2交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=2.根据勾股定理可求CD2得正方形的面积.【详解】作EF⊥l2,交l2于E点,交l4于F点.∵l2∥l2∥l3∥l4,EF⊥l2,∴EF⊥l2,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.在△ADE和△DCF中∴△ADE≌△DCF(AAS),∴CF=DE=2.∵DF=2,∴CD2=22+22=3,即正方形ABCD的面积为3.故选B.【点睛】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.6、C【解析】

根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【详解】解:反比例比例系数的正负决定其图象所在象限,当时图象在第一、三象限;当时图象在二、四象限,由题可知,所以A错误;当时,反比例函数图象在各象限内随的增大而减小;当时,反比例函数图象在各象限内随的增大而增大,由题可知,当时,随的增大而增大,所以B错误;比例系数:如果任意一点在反比例图象上,则该点横纵坐标值的乘积等于比例系数,因为点在它的图象上,所以,又因为点的横纵坐标值的乘积,所以点也在函数图象上,故C正确当时,反比例函数图象在各象限内随的增大而增大,由题可知,所以当时,随的增大而增大,而D选项中的并不确定是否在同一象限内,所以的大小不能粗糙的决定!所以D错误;故选:C【点睛】本题考查了反比例函数的性质,熟悉反比例函数的图象和性质是解题的关键.7、B【解析】

由平行四边形的性质得出,由折叠的性质得:,,由三角形的外角性质求出,与三角形内角和定理求出,即可得出的大小.【详解】四边形ABCD是平行四边形,,由折叠的性质得:,,,,,故选B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理,熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED'是解决问题的关键.8、B【解析】

根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【详解】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,即∠B=36°,故选:B.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.9、A【解析】

过等边三角形一条边做高,所以底边被分成了相等的两半,用勾股定理求出高等于,再用三角形面积公式可得:2×=.【详解】过等边三角形一条边做高,所以底边被分成了相等的两半,根据勾股定理可得:高等于,由三角形面积公式可得:2×=.故选A.【点睛】本题主要考查了等边三角形的性质及勾股定理的应用,解决本题的关键熟练掌握等边三角形的性质和勾股定理.10、B【解析】

首先根据平行四边形的性质,得出∠ABC的度数,又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是内错角,相等,即可得出∠AEB.【详解】解:∵□ABCD中,∠C=108°,∴∠ABC=180°-108°=72°又∵BE平分∠ABC,∴∠ABE=∠CBE=36°又∵∠AEB=∠CBE∴∠AEB=36°故答案为B.【点睛】此题主要考查利用平行四边形的性质求角的度数,熟练掌握即可解题.二、填空题(每小题3分,共24分)11、1【解析】

设DF=a,则AF=3a,AD=1a,设BC和AD之间的距离为h,求出BE=DF=a,根据平行四边形的面积求出ah=8,求出阴影部分的面积=ah,即可得出答案.【详解】设DF=a,则AF=3a,AD=1a,设BC和AD之间的距离为h,∵四边形BACD是平行四边形,∴AD∥BE,AD=BC=1a,BO=OD,∵BE∥AD,∴△BEO≌△DFO,∴BE=DF=a,∵平行四边形ABCD的面积为32,∴1a×h=32,∴ah=8,∴阴影部分的面积S=S△BEO+S△DFO=×(BE+DF)×h=×(a+a)×h=ah=1,故答案为1.【点睛】本题考查了旋转的性质和平行四边形的性质,能求出ah=8是解此题的关键.12、1【解析】

由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.【详解】解:由题意,得1+2a=5−2a,解得a=1.故答案为1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.13、180°﹣n°【解析】

由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.【详解】∵四边形ABCD是平行四边形,∴∠B=180°﹣∠C,由折叠的性质可知,∠GHC=∠C,∴∠GHB=180°﹣∠C,由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,∴360°﹣2∠C=n°,解得,∠C=180°﹣n°,故答案为:180°﹣n°.【点睛】本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.14、【解析】

先找到一元二次方程的常数项,得到关于m的方程,解出方程之后检验最后得到答案即可【详解】关于的一元二次方程的常数项为,故有,解得m=4或m=-1,又因为原方程是关于x的一元二次方程,故m+1≠0,m≠1综上,m=4,故填4【点睛】本题考查一元二次方程的概念,解出m之后要重点注意二次项系数不能为0,舍去一个m的值15、【解析】

根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.【详解】解:∵,∴,∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.16、11.5【解析】

根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.【详解】根据题意得每小时的用油量为,∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,当y=8时,x=11.5.故答案为:11.5.【点睛】此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.17、13【解析】

先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.【详解】过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴PQ=AE=故答案是:13.【点睛】本题主要考查正方形中的折叠问题,正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.18、k<1【解析】

根据一次函数图象所经过的象限确定k的符号.【详解】解:∵一次函数y=kx+1(k为常数,k≠1)的图象经过第一、二、四象限,

∴k<1.

故填:k<1.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.三、解答题(共66分)19、(1)证明见解析;(2)【解析】

(1)根据正方形性质得:AB=AD=BC=CD,∠ABE=∠ADF=90°,再根据等腰直角三角形得BE=DF,证明△ABE≌△ADF,得AE=AF,则△AFE是等腰三角形;(2)先根据直角三角形斜边中线等于斜边一半得:DM=AF,再由等腰三角形三线合一得:AC⊥EF,EN=FN,同理MN=AF,则DM=MN;可证∠FMD=2∠FAD,∠FMN==2∠FAC,则∠DMN=∠DMF+∠FMN=2∠FAD+2∠FAC=2∠DAC=90°.即可得到DM⊥MN.【详解】(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠ADF=90°,∵△EFC是等腰直角三角形,∴CE=CF,∴BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∴△AFE是等腰三角形;(2)DM=MN,且DM⊥MN.理由是:在Rt△ADF中,∵M是AF的中点,∴DM=AF,∵EC=FC,AC平分∠ECF,∴AC⊥EF,EN=FN,∴∠ANF=90°,∴MN=AF,∴MD=MN.由(1)得:△ABE≌△ADF,∴∠BAE=∠FAD,∵DM=AF=AM,∴∠FAD=∠ADM,∴∠FMD=∠FAD+∠ADM=2∠FAD,同理:∠FMN==2∠FAC,∴∠DMN=∠DMF+∠FMN=2∠FAD+2∠FAC=2∠DAC=2×45°=90°.∴MD⊥MN.【点睛】本题考查了正方形、等腰直角三角形的性质,本题还应用了直角三角形斜边中线的性质,要熟练掌握;本题的关键是证明△ABE≌△ADF,从而得出结论.20、.【解析】

设普通公路上的平均速度为,根据题意列出方程求出x的值,即可计算该汽车在高速公路上的平均速度.【详解】设普通公路上的平均速度为,解得,经检验:是原分式方程的解,高速度公路上的平均速度为【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.21、(1)10;(2)【解析】

根据二次根式的混合运算法则进行计算,即可解答.【详解】(1)原式=;(2)==;【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则.22、(1)见解析;(2);(3)【解析】

(1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;

(2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;

(3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.【详解】(1)如图1,连接DE,DF∵正方形ABCD∴AD=CD=CB=AB∠A=∠ADC=∠BCD=∠ABC=90°∴∠DCE=∠A=90°∴在ΔFAD和ΔECD中∴ΔDAF≌ΔDCE(SAS)∴DF=DE∵DH⊥EF∴FH=EH(2)如图2,连接BH,∵ΔFAD≌ΔECD∴∠ADF=∠CDE∵∠ADC=90°=∠ADF+∠FDC∴∠EDC+∠FDC=90°∴∠FDE=90°∴DH=EF=EH=FH∵∠FBC=90°∴BH=EF=EH=FH∴BH=DH∴在ΔBHC和ΔDHC中∴ΔBHC≌ΔDHC(SSS)∴∠BCH=∠DCH∴OC⊥BD∴∠HOB=90°∵BH=FH,∠BFE=75°∴∠FBH=∠BFH=75°∵正方形ABCD∴∠ABD=45°,∠HBO=30°∴OH=BH∴;(3)解:如图3,连接OA,作MK⊥OA于K.

由(2)可知:A,O,C共线,

∴∠MAK=45°,

∵AM=MB=2,∵CG∥AB,由△EHG∽△BCG,可得【点睛】本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.23、(1)咸鸭蛋的价格为1.2元,粽子的价格为3元(2)她最多能购买粽子10个【解析】

(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.(2)设小东妈妈能购买粽子y个,根据题意列出不等式解答即可.【详解】(1)设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论