广东省惠州市惠州一中学2024届八年级下册数学期末达标检测模拟试题含解析_第1页
广东省惠州市惠州一中学2024届八年级下册数学期末达标检测模拟试题含解析_第2页
广东省惠州市惠州一中学2024届八年级下册数学期末达标检测模拟试题含解析_第3页
广东省惠州市惠州一中学2024届八年级下册数学期末达标检测模拟试题含解析_第4页
广东省惠州市惠州一中学2024届八年级下册数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省惠州市惠州一中学2024届八年级下册数学期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.是整数,那么整数x的值是()A.6和3 B.3和1 C.2和18 D.只有182.下列计算正确的是()A.=﹣3 B. C.5×5=5 D.3.如图,长方形的高为,底面长为,宽为,蚂蚁沿长方体表面,从点到(点见图中黑圆点)的最短距离是()A. B. C. D.4.如图,已知矩形纸片ABCD的两边AB:BC=2:1,过点B折叠纸片,使点A落在边CD上的点F处,折痕为BE,若AB的长为4,则EF的长为()A.8-4 B.2 C.4−6 D.5.已知▱ABCD的周长为50cm,△ABC的周长为35cm,则对角线AC的长为()A.5cm B.10cm C.15cm D.20cm6.下列曲线中能够表示y是x的函数的有()A.①②③ B.①②④ C.①③④ D.②③④7.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()A.∠ABC=90° B.AC=BD C.∠OBC=∠OCB D.AO⊥BD8.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,19.计算的结果为()A.2 B.-4 C.4 D.±410.下列各式,计算结果正确的是()A.×=10 B.+= C.3-=3 D.÷=3二、填空题(每小题3分,共24分)11.如果一个多边形的每一个内角都是120°,那么这个多边形是____.12.如果反比例函数的图象在当的范围内,随着的增大而增大,那么的取值范围是________.13.已知一组数据4,,6,9,12的众数为6,则这组数据的中位数为_________.14.如图,在中,已知,则_______.15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为cm.16.一次函数y=2x+1的图象与x轴的交点坐标为______.17.已知,则____.18.如图是由5个边长为1的正方形组成了“十”字型对称图形,则图中∠BAC的度数是_________.三、解答题(共66分)19.(10分)为了解某校八年级学生每周平均课外阅读时间的情况,随机抽查了该校八年级部分学生,对其每周平均课外阅读时间进行统计,根据统计数据绘制成如图的两幅尚不完整的统计图:(1)本次共抽取了多少人?并请将图1的条形图补充完整;(2)这组数据的众数是________;求出这组数据的平均数;(3)若全校有1500人,请你估计每周平均课外阅读时间为3小时的学生多少人?20.(6分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.21.(6分)2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?22.(8分)如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)(1)求k,b的值;(2)求四边形MNOB的面积.23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连接OA,OC.求△AOC的面积.24.(8分)计算:(1)(2)(﹣1)2﹣(﹣)(+)25.(10分)某村为绿化村道,计划在村道两旁种植A、B两种树木,需要购买这两种树苗800棵,A、B两种树苗的相关信息如表:树苗单价(元/棵)成活率植树费(元/棵)A10080%20B15090%20设购买A种树苗x棵,绿化村道的总费用为y元,解答下列问题:(1)求出y与x之间的函数关系式.(2)若这批树苗种植后成活了670棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过120000元,则最多可购买B种树苗多少棵?26.(10分)已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.(1)求证:四边形CDEF是平行四边形;(2)填空:①当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是矩形;②当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是菱形.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据二次根式的运算法则即可求出答案.【详解】解:原式=,∵是整数,∴或,解得:x=2或x=18,故选:C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的性质,本题属于基础题型.2、D【解析】

根据二次根式的性质对A进行判断;根据二次根式的加减运算对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=25,所以C选项错误;D、原式==2,所以D选项正确.故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、D【解析】分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)根据他们相应的展开图分别计算比较:图①:;图②:;图③:.∵.故应选D.点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.4、A【解析】

由翻折的性质可知:BF=AB=4,AE=EF,设AE=EF=x,在Rt△DEF中,利用勾股定理构建方程即可解决问题.【详解】解:∵AB=4,AB:BC=2:1,∴BC=2,∵四边形ABCD是矩形,∴AD=BC=2,CD=AB=4,∠D=∠C=90°,由翻折的性质可知:BF=AB=4,AE=EF,设AE=EF=x,∴CF=,在Rt△DEF中,∵DE2+DF2=EF2,∴(2-x)2+(4-2)2=x2,x=8-4.故选A.【点睛】本题考查翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5、B【解析】

根据平行四边形的性质,首先计算AB+CB的长度,再结合三角形的周长,进而计算对角线AC的长.【详解】解:∵平行四边形的对边相等,∴AB+CB=25,而△ABC的周长为35cm,∴AC=35﹣AB﹣CB=10cm.故选:B.【点睛】本题主要考查对角线的长度的计算,结合平行四边形的性质和三角形的周长可得对角线的长度.6、A【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之相对应,据此即可确定哪一个是函数图象.【详解】解:①②③的图象都满足对于x的每一个取值,y都有唯一确定的值与之相对应,故①②③的图象是函数,④的图象不满足满足对于x的每一个取值,y都有唯一确定的值与之相对应,故D不能表示函数.故选:A.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.7、D【解析】

依据矩形的定义和性质解答即可.【详解】∵ABCD为矩形,∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;∴OB=OC,∴∠OBC=∠OCB,故C正确,与要求不符.当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.故选:D.【点睛】本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.8、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.9、C【解析】

根据算术平方根的定义进行计算即可.【详解】解:=4,故选C.【点睛】本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.10、D【解析】分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.详解:A、原式=,所以A选项错误;B、与不是同类二次根式,不能合并,所以B选项错误;C、原式=2,所以C选项错误;D、原式=,所以D选项正确.故选:D.点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(每小题3分,共24分)11、六边形.【解析】依据多边形的内角和公式列方程求解即可.解:180(n﹣2)=120°n解得:n=1.故答案为:六边形.12、【解析】

根据反比例函数图象在当x>0的范围内,y随着x的增大而增大,可知图象在第四象限有一支,由此确定反比例函数的系数(k-2)的符号.【详解】解:∵当时,随着的增大而增大,∴反比例函数图象在第四象限有一支,∴,解得,故答案为:.【点睛】本题考查了反比例函数的性质.对于反比例函数,(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.13、1【解析】

根据众数的定义求出x,然后根据中位数的概念求解.【详解】解:∵数据4,x,1,9,12的众数为1,∴x=1,则数据重新排列为4,1,1,9,12,所以中位数为1,故答案为:1.【点睛】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14、【解析】

根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.【详解】解:∵,∴,∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.15、.【解析】试题分析:首先根据菱形的对角线互相垂直平分,再利用勾股定理,求出BC的长是多少;然后再结合△ABC的面积的求法,求出菱形ABCD的高AE是多少即可.解:∵四边形ABCD是菱形,∴AC、BD互相垂直平分,∴BO=BD=×8=4(cm),CO=AC=×6=3(cm),在△BCO中,由勾股定理,可得BC===5(cm)∵AE⊥BC,∴AE•BC=AC•BO,∴AE===(cm),即菱形ABCD的高AE为cm.故答案为.16、(-12,0【解析】

令y=0可求得x的值,则可求得与x轴的交点坐标.【详解】解:令y=0,即2x+1=0,解得:x=-12∴一次函数y=2x+1的图象与x轴的交点坐标为(-12,0故答案为:(-12,0【点睛】本题考查了一次函数与x轴的交点坐标.17、1【解析】

先求出x的值,然后提取公因式xy分解因式,再把数值代入得出答案.【详解】解:∵,∴x=-5∴xy(x+y)=-5×3×(-2)

=1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.18、45.【解析】

连接BC,通过计算可得AB=BC,再利用勾股定理逆定理证明△ABC是等腰直角三角形,从而得出结果.【详解】解:连接BC,因为每个小正方形的边长都是1,由勾股定理可得,,,∴AB=BC,,∴∠ABC=90°.∴∠BAC=∠BCA=45°.故答案为45°.【点睛】本题考查了勾股定理及其逆定理、等腰直角三角形的判定和性质,解题的关键是连接BC,构造等腰直角三角形,而通过作辅助线构造特殊三角形也是解决角度问题的常见思路和方法.三、解答题(共66分)19、(1)60人,图见解析;(2)众数是3,平均数是2.75;(3)500人.【解析】

(1)根据统计图中的数据可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】解:(1)由图2知阅读时间为2小时的扇形图圆形角为90°,即阅读时间为2小时的概率为,再根据图1可知阅读2小时的人数为15人,所以本次共抽取了15÷=60名学生,阅读3小时的学生有:60-10-15-10-5=20(名),补充完整的条形统计图如下图所示;(2)由条形统计图可得,这组数据的众数是3,这组数据的平均数是:;(3)1500×=500(人),答:课外阅读时间为3小时的学生有500人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、加权平均数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)y=x2+2x﹣1;(2)当m=-时,PQ最长,最大值为;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).【解析】

(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(1)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案【详解】解:(1)将A(1,0),B(﹣1,0)代入y=ax2+bx﹣1得:解得:∴抛物线的解析式为:y=x2+2x﹣1,当x=﹣2时,y=(﹣2)2﹣4﹣1=﹣1,∴D(﹣2,﹣1),设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣1)代入得:解得:∴直线AD的解析式为y=x﹣1;因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣1.(2)∵点P在直线AD上,Q抛物线上,P(m,n),∴n=m﹣1Q(m,m2+2m﹣1)∴PQ的长l=(m﹣1)﹣(m2+2m﹣1)=﹣m2﹣m+2(﹣2≤m≤1)∴当m=时,PQ的长l最大=﹣()2﹣()+2=.答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2(﹣2≤m≤1)当m=时,PQ最长,最大值为.(1)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:∵PQ的长为0<PQ≤的整数,∴PQ=1或PQ=2,当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);当PQ=2时,则DR=2,此时,在点D上方有R1(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣1)综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).【点睛】此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式21、(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.【解析】

(1)设未知量为x,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.(2)设未知量为y,根据题意列出一元一次不等式,解不等式可得出结论.【详解】(1)设该商家购进第一批纪念衫单价是x元,则第二批纪念衫单价是(x+5)元,由题意,可得:,解得:x=30,检验:当x=30时,x(x+5)≠0,∴原方程的解是x=30答:该商家购进第一批纪念衫单价是30元;(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)设每件纪念衫标价至少是a元,由题意,可得:40×(a﹣30)+(80﹣20)×(a﹣35)+20×(0.8a﹣35)≥640,化简,得:116a≥4640解得:a≥40,答:每件纪念衫的标价至少是40元.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.22、(1)k=,b=;(2)【解析】

(1)根据待定系数法可求出解析式,得到k、b的值;(2)根据函数解析式与坐标轴的交点,可利用面积公式求出四边形的面积.【详解】(1)M为l1与l2的交点令M(1,y),代入y=2x+4中,解得y=2,即M(1,2),将M(1,2)代入y=kx+b,得k+b=2①将A(-2,0)代入y=kx+b,得-2k+b=0②由①②解得k=,b=(2)解:由(1)知l2:y=x+,当x=0时y=即OB=∴S△AOB=

OA·OB=×2×

=在y=-2x+4令y=0,得N(2,0)又因为A(-2,0),故AN=4所以S△AMN=×AN×ym=×4×2=4故SMNOB=S△AMN-S△AOB=4-=.【点睛】考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.23、(1)y=,y=x﹣2;(2)1.【解析】

(1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;(2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.【详解】解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,则反比例函数的解析式是y=,当x=3代入y==1,则C的坐标是(3,1);把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,所以一次函数的解析式是:y=x﹣2;(2)x=0,x﹣2=0,解得x=2,则D(2,0),所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.24、(1);(2)【解析】

(1)根据绝对值的意义、有理数的乘方、二次根式的性质、负整数指数幂的意义化简,进而求和即可;(2)根据二次根式混合运算法则计算即可.【详解】(1)原式==;(2)原式===.【点睛】本题考查了实数的混合运算.熟练掌握相关法则是解答本题的关键.25、(1)y=—50x+136000;(2)111000元.(3)若绿化村道的总费用不超过120000元,则最多可购买B种树苗1棵.【解析】分析:(1)设购买A种树苗x棵,则购买B种树苗(800﹣x)棵,根据总费用=(购买A种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;(2)根据这批树苗种植后成活了670棵,列出关于x的一元一次方程,求出x的值,即可求解.(3)根据总费用不超过120000元,列出关于x的一元一次不等式,求解即可.详解:(1)设购买A种树苗x棵,则购买B种树苗(8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论