安徽省合肥168中学2024年数学八年级下册期末检测模拟试题含解析_第1页
安徽省合肥168中学2024年数学八年级下册期末检测模拟试题含解析_第2页
安徽省合肥168中学2024年数学八年级下册期末检测模拟试题含解析_第3页
安徽省合肥168中学2024年数学八年级下册期末检测模拟试题含解析_第4页
安徽省合肥168中学2024年数学八年级下册期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥168中学2024年数学八年级下册期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,四边形中,,,,,则四边形的面积是().A. B. C. D.2.如图,平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,.下列结论:①;②是等边三角形;③;④;⑤中正确的有()A.1个 B.2个 C.3个 D.4个3.若一个三角形各边的长度都扩大2倍,则扩大后的三角形各角的度数都()A.缩小2倍 B.不变 C.扩大2倍 D.扩大4倍4.要使分式有意义,则x应满足()A.x≠﹣1 B.x≠2 C.x≠±1 D.x≠﹣1且x≠25.点M(-2,3)关于x轴对称点的坐标为A.(-2,-3)B.(2,-3)C.(-3,-2)D.(2,3)6.如图,直线l1//l2//l3,直线AC分别交直线l1、l2、l3于点A、B、C,直线DF分別交直线l1,l2、l3于点A.ABBC=C.PAPB=7.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.48.下列四组线段中,可以构成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.7,8,99.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A. B.C. D.10.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm二、填空题(每小题3分,共24分)11.如图,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,在线段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=_____.12.当二次根式的值最小时,=______.13.如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.14.如图,在菱形OABC中,点B在x轴上,点A的坐标为,则点C的坐标为______.15.如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.16.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.17.平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.18.当a=______时,的值为零.三、解答题(共66分)19.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.(1)请依据图表中的数据,求a,b的值.(2)直接写出表中的m=,n=.(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.20.(6分)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.21.(6分)如图,在□ABCD中,∠B=60°.(1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:△ABE是等边三角形.22.(8分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.23.(8分)计算或解方程:(1)计算:+;(2)解方程:24.(8分)物理兴趣小组位同学在实验操作中的得分情况如下表:得分(分)人数(人)问:(1)这位同学实验操作得分的众数是,中位数是(2)这位同学实验操作得分的平均分是多少?(3)将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?25.(10分)化简:.26.(10分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、A【解析】如下图,分别过、作的垂线交于、,∴,∵,∴,在中,,∴.故选A.2、C【解析】

由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF,⑤正确.【详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠EAD=∠AEB,

又∵AE平分∠BAD,

∴∠BAE=∠DAE,

∴∠BAE=∠BEA,

∴AB=BE,

∵AB=AE,

∴△ABE是等边三角形;

②正确;

∴∠ABE=∠EAD=60°,

∵AB=AE,BC=AD,在△ABC和△EAD中,,

∴△ABC≌△EAD(SAS);

①正确;

∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),

∴S△FCD=S△ABC,

又∵△AEC与△DEC同底等高,

∴S△AEC=S△DEC,

∴S△ABE=S△CEF;

⑤正确;

若AD与AF相等,即∠AFD=∠ADF=∠DEC,

即EC=CD=BE,

即BC=2CD,

题中未限定这一条件,

∴③④不一定正确;

故选C.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.3、B【解析】

由一个三角形各边的长度都扩大2倍,可得新三角形与原三角形相似,然后由相似三角形的对应角相等,求得答案.【详解】解:∵一个三角形各边的长度都扩大2倍,

∴新三角形与原三角形相似,

∴扩大后的三角形各角的度数都不变.

故选:B.【点睛】此题考查了相似三角形的判定与性质.注意根据题意得到新三角形与原三角形相似是解此题的关键.4、D【解析】试题分析:当(x+1)(x-2)时分式有意义,所以x≠-1且x≠2,故选D.考点:分式有意义的条件.5、A【解析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.解:∵3的相反数是-3,

∴点M(-2,3)关于x轴对称点的坐标为(-2,-3),

故答案为A点评:考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数6、C【解析】

根据平行线分线段成比例定理列出比例式,判断即可.【详解】解:∵l1∥l2∥l3,平行线分线段成比例,∴ABBC=DEPAPC=PDPAPB=PDPBPE=PCPF=故选择:C.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7、A【解析】

求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE=12AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=12BD=12cm,得出AE=3.5cm【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,所以△EBD∽△ABC,E为AB的中点,AE=BE=12AB=2cm∴t=2s;②当∠DEB=∠ACB=90°时,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D为BC的中点,∴BD=12BC=1cm∴BE=12BD=0.5cm∴AE=3.5cm,∴t=3.5s;综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,故选:A.【点睛】本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.8、B【解析】

不能构成直角三角形,故A选项错误;可以构成直角三角形,故B选项正确;不能构成直角三角形,故C选项错误;不能构成直角三角形,故D选项错误;故选B.【点睛】如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.9、C【解析】

根据点的位置得出不等式组,求出不等式组的解集,即可得出选项.【详解】解:∵点P(x-4,x+3)在平面直角坐标系的第二象限内,∴,解得:-3<x<4,在数轴上表示为:,故选C.【点睛】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集和点的坐标等知识点,能求出不等式组的解集是解此题的关键.10、D【解析】

根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.二、填空题(每小题3分,共24分)11、2【解析】

设,根据正方形的性质、平行四边形的面积公式分别表示出,,,根据题意计算即可.【详解】解:设DB=x,则S1=x1,S1==1x1,S3=1x×1x=4x1.由题意得,S1+S3=15,即x1+4x1=15,解得x1=3,所以S1=1x1=2,故答案为:2.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是是解题的关键.12、1【解析】

直接利用二次根式的定义分析得出答案.【详解】∵二次根式的值最小,∴,解得:,故答案为:1.【点睛】本题主要考查了二次根式的定义,正确把握定义是解题关键.13、.【解析】

先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.【详解】设△ABC的高为h,∵S△ABC=BC•h=3h=,∴h=.∵,∴点A的横坐标为.设点C(3,m),则点A(,m+),∵点A、C在反比例函数y=(k>0,x>0)的图象上,则k=3m=(m+),解得,则k=3m=,故答案为:.【点睛】本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.14、【解析】

根据轴对称图形的性质即可解决问题.【详解】四边形OABC是菱形,、C关于直线OB对称,,,故答案为.【点睛】本题考查菱形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握菱形的性质,利用菱形是轴对称图形解决问题.15、【解析】

证明△ADD′是等腰直角三角形即可解决问题.【详解】解:由旋转可知:△ABD≌△ACD′,∴∠BAD=∠CAD′,AD=AD′=2,∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,∴DD′=,故答案为:.【点睛】本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、4【解析】

根据对角线互相垂直的四边形的面积等于对角线乘积的一半.【详解】解:如图,∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中AB=AD,∴△BAE≌△DAE,∴∠BEA=∠DEA,∵∠BEA+∠DEA=180º,∴∠BEA=∠DEA=90º,∴DB⊥AC,∴S四边形ABCD=12AC×∵AC=8,S四边形ABCD=16,∴BD=4.故答案为:4.【点睛】本题考查了对角线互相垂直的四边形的面积.17、22或1.【解析】

根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3时,CE=5,AB=3,则周长为22;②当BE=5时,CE=3,AB=5,则周长为1,故答案为:22或1.【点睛】本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.18、﹣1.【解析】

根据分式的值为零的条件列式计算即可.【详解】由题意得:a2﹣1=2,a﹣1≠2,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为2;②分母不为2.这两个条件缺一不可.三、解答题(共66分)19、(1)a=5,b=1;(2)m=6,n=20%;(3)答案见解析.【解析】试题分析:(1)根据题意可以得到关于a、b的方程组,从而可以求得a、b的值;(2)根据表格可以得到m和n的值;(3)根据表格中的平均数和中位数进行说明即可解答本题.试题解析:解:(1)由题意和图表中的数据,可得:,即,解得:;(2)七年级的中位数m=6,优秀率n=2÷10=20%;(3)八年级队成绩比七年级队好的理由:①八年级队的平均分比七年级队高,说明八年级队总成绩比七年级队的总成绩好.②中位数七年级队是6,八年级队是7.5,说明八年级队半数以上的学生比七年级队半数以上的成绩好.点睛:本题考查条形统计图、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.20、2.【解析】试题分析:延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.试题解析:如图,延长BD交AC于点F,∵AD平分∠BAC,∴∠BAD=∠CAD.∵BD⊥AD,∴∠ADB=∠ADF,又∵AD=AD,∴△ADB≌△ADF(ASA).∴AF=AB=6,BD=FD.∵AC=10,∴CF=AC-AF=10-6=4.∵E为BC的中点,∴DE是△BCF的中位线.∴DE=CF=×4=2.21、(1)见解析;(1)见解析【解析】

(1)作∠A的角平分线与边BC交于点E即可;

(1)根据平行四边形的性质即可证明△ABE是等边三角形.【详解】解:(1)如图(1)如图,∵四边形是平行四边形,∴,∴∠1=∠1.∵AE平分∠BAD,∴∠1=∠3,∴∠1=∠3,∴AB=EB.∵∠B=60°,∴△ABE是等边三角形.【点睛】本题考查了作图-基本作图、等边三角形的判定、平行四边形的性质,解决本题的关键是掌握以上知识.22、(2)详见解析(2)CF=【解析】

(2)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证.(2)与(2)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式计算即可求出AD.【详解】解:(2)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF.在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,∴△AOD≌△COF(SAS).∴AD=CF.(2)与(2)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论