世界经济论坛-未来的工作:大型语言模型和工作-一个商业工具包(英)_第1页
世界经济论坛-未来的工作:大型语言模型和工作-一个商业工具包(英)_第2页
世界经济论坛-未来的工作:大型语言模型和工作-一个商业工具包(英)_第3页
世界经济论坛-未来的工作:大型语言模型和工作-一个商业工具包(英)_第4页
世界经济论坛-未来的工作:大型语言模型和工作-一个商业工具包(英)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IncollaborationwithAccentureJobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkitWHITEPAPERDECEMBER2023Images:GettyImagesContentsForeword34ExecutivesummaryIntroduction51Consideration1:Jobchangeandjobdisplacementrisk1.1Responsiblebusinessstrategies2Consideration2:Jobquality2.1Responsiblebusinessstrategies3Consideration3:Skillingandlearning3.1ResponsiblebusinessstrategiesConclusion789101112131415ContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.©2023WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.JobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkit2December2023JobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkitForewordMaryKateMorleyRyanElselotHasselaarTalentandOrganization/HumanPotentialManagingDirector,AccentureHeadofMission,Work,WagesandJobCreation,WorldEconomicForumGenerativeartificialintelligence(AI)and,inparticular,largelanguagemodels(LLMs),underpinnedbyadvancementsinmachinelearningandnaturallanguageprocessing,representaparadigmshiftinhowweinteractwithinformationand,byextension,howwework.Thesetechnologiescancreateoriginalcontent,generateinsightsfromlargeamountsofdata,translatelanguageswithnear-humanaccuracyandpotentiallyevenmakecomplexdecisions.Theversatilityandefficiencyofthesetechnologies,includingnewLLM-poweredhuman-machineinterfacessuchasintelligentagents,couldhaveprofoundimplicationsforjobsandthefutureofwork.initiativeincuratingstrategiesandpracticesthatfacilitateLLMstoworkforbusinesses,employeesandsocietyasawhole.Thispaperisadirectfollow-uponthepreviouseditionoftheJobsofTomorrowseries,JobsofTomorrow:LargeLanguageModelsandJobs,whichtookastructuredapproachtounderstandingthedirectimpactofLLMsonspecificjobs.ThatpaperprovidedastructuredanalysisofthepotentialimpactofLLMsonjobs,enablingstakeholders–businessleaders,policy-makers,workersandthebroaderpublic–tomakemoreinformeddecisions.Inaddition,thestructuredapproachproposedinthatpaperalsoprovidedacasestudyforfuturewavesoftechnologicaladvancementacrosssectors.WhiletheapplicationofLLMscouldleadtosignificantproductivitygainsandthecreationofnewtypesofjobs,thereisalsoariskthattheycoulddisplaceexistingroles,exacerbatingsocioeconomicdisparitiesandcreatingasenseofjobinsecurityamongtheglobalworkforce.Assuch,integratingAIintoourworkplacesisabalancingactbetweenseizingopportunitiesandmanagingpotentialdisruptions.WearedeeplygratefultotheCentrefortheNewEconomyandSocietypartnersandconstituentsfortheirleadershipofthejobsagenda,aswellasforthepartnershipoftheAccentureteam,whosemembersservedascorecollaboratorsonthispaper.TheinsightsofthispaperwillbeinstrumentalfortheJobsConsortium,aglobalcoalitionofministersandchiefexecutiveofficersthatpromotesabetterfutureofwork,throughboostinglabourmarketforesight,drivingjobcreationandimprovingjobqualitywhileenablingjobtransitionsandwillserveasakeytoolfortheGoodWorkAlliance,aglobal,cross-industrygroupofbusinessescommittedtoprioritizinggoodworkinanevolvingjobslandscape.Thispaperisintendedtoserveasatoolkitforbusinessestoprovideguidanceonstrategiestomaximizethepotentialofemployeesastheyadapt,learnandgrowwiththesetechnologiesintheirprofessionalcareers.ThispaperalsoservesasacalltoactionforbusinessleaderstotaketheJobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkit3ExecutivesummaryBusinesseswillneedtostrategicallynavigateconcernsoverjobdisplacementrisk,jobqualityandskilling.Theexplosivepopularityandaccessibilityofgenerativeartificialintelligence(AI)technologies,suchasGitHub’sCopilot,MidjourneyandChatGPT,haveproducedAI’sfirsttrueinflexionpointinpublicadoption,demonstratingthetechnology’stransformativepotential.WhiletherearemyriadpossibleusecasesforgenerativeAI,includingimage,video,writtenlanguageandmusiccreation,largelanguagemodels(LLMs)haveanoutsizedpotentialtoimpactthegreatestnumberofjobsinthenearfuture.Jobsemphasizingface-to-faceinteractionarelikelytobelessaffected.Businessesareurgedtoadoptproactiveandresponsibleapproachestomanagethistransformation,addressingconcernslikejobchangeandjobdisplacementrisk,jobqualityandskilling.Structuredanalysis,planningandproactivepreparationarerequiredofbusinessleaderstoensurethatLLMsandothertechnologicaladvancementsleadtoanimprovedfutureofworkwithnewopportunitiesforworkers.Thispaperservesasatoolkitforbusinesses,providingpracticalstrategiestonavigatethechangingjoblandscapeinthreeprimaryareasofconsideration:1)jobchangeandjobdisplacementrisk,2)jobquality,and3)learningandskilling.Eachoftheseconsiderationsisaddressedthroughbusinesspracticesguidedbythreefundamentalapproaches:1)promotingworkerawareness,2)facilitatingorganizationalchange,and3)shiftingworkplacenormsandculture.Theresultisabusinessstrategymatrixforeffectivelyleadingtheworkforcetransitionthroughthelarge-scaledeploymentofLLMs.TheFutureofJobsReport2023statesthatglobalbusinessleadersbelievethat23%ofglobaljobsareexpectedtotransformwithinthenextfiveyearsduetorapidtechnologicaladvances,particularlyingenerativeAItechnologies.Especially,LLM’shavethepotentialforbothautomatingandaugmentingtasksacrossvariousoccupations.TheJobsofTomorrow:LargeLanguageModelsandJobswhitepaper,publishedbytheWorldEconomicForumandAccentureearlierin2023,foundthat40%ofworkinghourscouldbetransformed,affectingrolesfromspecializedfieldsrequiringadvanceddegreestothosefocusedonroutineprocedures.JobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkit4IntroductionUpto40%ofworkinghourscouldbetransformedbyLLMs–businessesmusttakethelead.Technologyisrapidlytransformingthelabourmarket.TheFutureofJobsReport2023foundthatglobalbusinessleadersexpect23%ofcurrentpoint,demonstratingthetechnology’stransformativepotential.OneweekintoitsNovember2022launch,ChatGPT,OpenAI’strainedlanguagemodel,reachedonemillionusers.ByJanuary,ChatGPThadreachedonehundredmillionmonthlyactiveusers,makingitthefastest-growingconsumerjobstotransformwithinthenextfiveyears.This1transformationisdrivenbykeytrendsliketechnologyadoption,thegreentransitionandtheglobalmacroeconomicoutlook.Inparticular,technologyadoptionisdrivingchangeinlabourmarkets:82%ofbusinessleadersexpectincreasedadoptionofnewtechnologiestodrivebusinesstransformation,while37%ofbusinessleadersanticipatethatnewtechnologieswillbeanetjobcreator,and21%believethattheywillbeanetjobdisplacer.applicationinhistoryatthetime.3Generativetransformermodelshavetheabilitytoimpactallclassesofcreativework,possessingthecapabilitytogeneratenovelimages,videos,music,soundsandwrittenlanguage.WhiletherearemyriadpossibleusecasesforgenerativeAI,largelanguagemodels(LLMs)andtheiruniquelanguage-generatingcapabilitieshaveanoutsizedpotentialtoimpactthegreatestnumberofjobsinthenearfuture.LLMs,suchasthosepoweringChatGPT,havedemonstratedthisrapiddevelopmentandhavethepotentialtoimpactmanyjobsandworkersacrossindustries.InSeptember2023,toincreaseunderstandingofhowLLMscouldimpactjobs,theWorldEconomicForum,incollaborationwithAccenture,publishedtheJobsofTomorrow:LargeLanguageModelsandJobswhitepaper.ItprovidesastructuredanalysisofthepotentialThroughout2023,specifically,generativeartificialintelligence(AI)hasdevelopedatarapidpaceintermsofcapabilitiesandadoption,andthatpaceshowsnosignsofslowingdown.Infact,threeoutofeveryfourcompaniesacrosstheglobeareexpectedtoadopttechnologiesthatincludegenerativeAIinthenext3to5years,and98%ofglobalexecutivesagreeAIfoundationmodelswillplayanimportantroleintheirorganizations’strategiesinthatsametimeperiod.2GitHub’sCopilot,MidjourneyandChatGPTareacaseinJobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkit5Over40%ofworkingimpactofLLMsonjobsandfindsthatitwillbothautomateandaugmentjobtasks,ultimatelyhavingatransformativeeffectonjobs.potentialforjobtransformationasfoundbytheJobsofTomorrow:LargeLanguageModelsandJobswhitepaper,itiscriticalthatbusinessesadoptaproactive,human-centredandresponsibleapproachtoLLMs.hourscouldbetransformedbyLLMsthroughautomationoraugmentation.TheSeptember2023whitepaperfoundthatanestimated62%oftotalworktimeacrossoccupationsinvolveslanguage-basedtasks–tasksthatcouldbeexposedtothepotentialimpactsofLLMs.Over19,000individualtasksacross867occupationswereassessedtounderstandthepotentialexposureofeachtasktoLLMadoption,classifyingthemastaskswithhighpotentialforautomation(thetaskcouldbeperformedbyLLMs,withouthumans),highpotentialforaugmentation(thetaskwillcontinuetobeperformedbyhumans,withLLMsincreasinghumanproductivity),lowpotentialforeither(humanswillcontinuetoperformthetaskwithnosignificantimpactfromLLMs)orunaffected(non-languagetasks).Thiswhitepaperisafollow-uptotheJobsofTomorrow:LargeLanguageModelsandJobspaperandservesasatoolkitforbusinessestoaddressthreeconsiderationsforthetechnologicaltransformationoflabourmarketstocome.Thefirstisjobchangeandjobdisplacementrisk:asLLMsarecapableofperformingmanyofthelanguagetasksusedonthejob,andupto60%ofworktimeuseslanguagetasks,thereispotentialforsomejobstobedisplacedasothersemerge.Thesecondisjobquality:thedeploymentofthesetechnologicaltoolscouldaffectnotonlythenumberofjobsbutalsothenatureoftheworkitself,potentiallyaffectingthemeaningfulnessofwork,thewell-beingofworkersandthediversityassociatedwithnewandlegacyroles.Thethirdconcernislearningandskilling:toadjusttoandembracetechnologicalchangerequirescontinuouslearning;anagileworkforceisthebestapproachtomeettheevolvingdemandsofthelabourmarket.Theanalysisfoundthatover40%ofworkinghourscouldbetransformedbyLLMsthroughautomationoraugmentation.Jobswiththehighestpotentialforautomationoftasksincludethosethatemphasizeroutineandrepetitiveproceduresanddonotrequireahighdegreeofinterpersonalcommunication,includingmanyclericaloccupations.JobswiththehighestpotentialforaugmentationbyLLMsarethosethatemphasizecriticalthinkingandcomplexproblem-solvingskills,especiallythoseinscience,technology,engineeringandmathematics(STEM)fields.Theyincludeamixofhighlyspecializedrolesoftenrequiringadvanceddegrees,suchascomputerprogrammers,plusrolesthatrequirehumanvalidation,suchasassessors,monitorsandscreeners.Jobsemphasizingface-to-facecommunicationandinterpersonalinteractionsareexpectedtobelessexposedtotheimpactsofLLMs,andthoseemphasizingnon-languagetaskswillbeevenlessexposedornotexposedInthefollowingsections,eachconsiderationisfirstdefinedandthenaddressedwithseveralpracticalbusinessstrategiesthatensureacohesiveandinclusiveapproachtotherapidlychangingjoblandscape.Thiswhitepaperproposesthatthebusinessstrategiesfallintothreeprimaryapproaches:1)promotingworkerawareness,whichinvolvesinformingandeducatingemployeesaboutthepotentialimpactsofLLMsontheircurrentrolesandfuturejobprospects,empoweringthemtoproactivelyengagewiththeevolvingtechnologicallandscape,2)facilitatingorganizationalchange,inwhichcompaniesadapttheirstructures,processesandstrategiestoharnessthebenefitsofnewtechnologieswhilemitigatingtherisksassociatedwithsuchtransformations,and3)shiftingworkplacenormsandculture,toreshapetheunderlyingattitudes,behavioursandvalueswithintheatall.Lastly,thepaperalsofoundthatnewjobs4couldemerge,forexample,AImodelandpromptengineers,interfaceandinteractiondesigners,AIcontentcreators,datacuratorsandtrainers,andethicsandgovernancespecialists.workplacetopromoteagilityinresponsivenesstochange.Table1summarizesthekeyconsiderationsandproposedbusinessstrategies.GiventhelikelyubiquitousimplementationofLLMsinbusinessenvironments,pairedwithitsTABLE1SummaryofbusinessstrategiesineachoftheprimarythreeconcernsJobchangeandjobdisplacementriskJobqualitySkillingandlearningWorkerawareness1Deployproactiveforecastingandcommunicateexpectations4EnsureinclusivedesignofAIandLLMapplications7RolloutbroadLLMliteracyprogrammesalongsideAI-specificjobsOrganizationalchange2Setupandmakeuseofinternaljobmarkets5ImplementtransparentgovernancestructuresforLLMdeployment8Applyaskill-firstapproachorganizationwideShiftingnormsandculture3Createincreasedworkforceagility6IncreaseawarenessofLLMbenefitsintheworkplace9OfferworkplacelearningopportunitiesJobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkit6Consideration1Jobchangeandjobdisplacementrisk1Proactivelyaddressingjobchangeandjobdisplacementriskthroughinternaljobmarketsandworkeragilityensuressmoothtransitionsforemployees.ConcernshavearisenthatthelatestwaveofforaugmentationbyLLMs,meaningthesegenerativeAItechnologies,specificallyLLMs,couldleadtotheautomationofjobtasksand,ultimately,jobloss.Whilelabourmarketpredictionsarenever100%certain,recentWorldEconomicForumresearchtookastructuredapproachandfoundthattheadoptionofLLMscouldautomatesometaskstechnologieswillassistintaskexecutionandboostindividualproductivity.Additionally,thepaperfoundthereispotentialtogeneratenewemploymentopportunitiesbycreatingrolesthatoversee,complementandenhanceAI’scapabilities.andaugmentothers.5TheFutureofJobsReport2023echoesmanyofthesefindings,indicatingthatmanyofthejobswithhighpotentialforautomationbyLLMswerealsoexpectedbybusinessleaderstoundergoemploymentdeclinewithinthenextfiveyears,suchasbanktellersandrelatedclerks,dataentryclerks,andadministrativeandexecutivesecretaries.Jobswithhigherpotentialforaugmentationareexpectedtogrow,suchasAIandmachinelearningspecialists,dataanalystsandscientists,anddatabaseandnetworkprofessionals.TheWorldEconomicForum’sJobsofTomorrow:LargeLanguageModelsandJobswhitepaperfoundthatjobtaskswiththehighestpotentialforautomationbyLLMstendtobethosethatuselanguageinaroutineandrepetitivemanner.WhileLLMswillimpacttasks–ratherthanjobsasawhole–jobsemphasizingthesetypesoflanguagetaskscouldseeadecline,withsomeworkersawareofthispotential.Forexample,overthecourseofQ3of2023,globalsearchesfor“Ismyjobsafe?”doubled,indicatingthepublic’sincreasingconcernaboutwhetherLLMswouldJobtasksemphasizingabstractreasoningandproblem-solvingskillshavethehighestpotentialforaugmentationbyLLMs,meaningthesetechnologieswillassistintaskexecutionandboostindividualproductivity.Nevertheless,labourmarketpredictionsarenevercompletelycertainandwilllikelyevolvewiththedevelopmentofLLMs.Businessesmustbeproactivelyengagedinaddressingtheconcernsoftheirworkerswhilepreparingthemtoadapttothetransitiontocome.automatetheirjobs.However,LLMsandother6generativeAItechnologiesofferpotentialforjobgrowthaswell.Thesamepaperfoundthatjobtasksemphasizingabstractreasoningandproblem-solvingskillshavethehighestpotential1.1ResponsiblebusinessstrategiesWorkerawareness–deploychancetogrow.Enablinginternalmobilitynotonlyrewardsloyalemployees,itenablesfirmstoaddresstheirtalentshortageswhilemitigatingcosts.About60%ofcompaniesgloballynotethatskillsgapsareamajorlimitationtobusinesstransformation.12Replacingworkersiscostly:Gallupestimatesthatthereplacementcostcanexceedtwotimesanemployee’sannualsalary.13Retainingexperiencedworkersthroughjobtransitionsontheinternaljobmarketreducestotalhiringcostsandincreasesthespeedatwhichpeoplecontributevaluetoanorganization.proactiveforecastingandcommunicateexpectationsUsingpredictiveanalyticstoforecastwhichjobswillmostlikelybeaffectedbyLLMsandotherdisruptions,andcommunicatingactivelywithmanagementandemployeestoproactivelyprovidepathwaystomitigatenegativeemploymentimpacts.–Organizationshavetheabilityandresponsibilitytosupportworkersthroughjobchangesanddisruptions.Equippingemployeeswiththerightknowledgeempowersthemtomakebetter–HSBC,aglobalfinancialservicesorganizationbasedintheUK,deployedaninternaljobmarketforabout200,000ofitsemployeeswithplanstoexpandaccesstoall220,000employeesaroundtheworld.Theyestimatethattheirinternaltalentmarketplaceiscentraltotheirskill-buildingstrategyandhasunlockedover170,000hoursofwork.Furthermore,about45%ofprojectsarecross-functional.14decisionsinsearchingforreskillingopportunities7ortransitioningtoadifferentjoborcareer.Clearlysharingdataandmethodswillalsoincreasetrustandimproveemployeewell-being,performanceandbusinessaccountability.AnalyseslikeJobs8ofTomorrow:LargeLanguageModelsandJobsproviderealisticassessmentsofthelabourmarketandcanhelpshapeexpectationsintheshortterm.OrganizationscanusetheresultsofthesestudiesorapplysimilaranalysismethodstounderstandhowLLMscouldtransformtheirbusinessandtheworkoftheiremployees.Shiftingnormsandculture–createincreasedworkforceagility–In2019,SingaporelauncheditsNationalAIStrategy,whichincludesadditionalskillingandeducationprogrammestosupportworkers–particularlyrelevantasa2018reportbyCiscoandOxfordEconomicsfoundthatSingaporehadthemostrelativeexposureofsixASEANcountriestopotentialjobdisplacementeffectsofAI,with7in10workersinSingaporeCreateacompanyculturethatvaluesandrewardsflexibilityinjobroles,encouragingemployeestoembracediverseworkexperiencesandinterdisciplinaryskilldevelopment,whichcouldreducetheanxietyaroundjobdisplacementandpromotearesilientworkforce.–Bycultivatingaculturethatvaluesworkforceagility,employeesbecomemoreadaptableandresilient,betterequippedtotransitionintonewrolesasLLMsimpactjobmarkets.Creatingsuchacompanycultureinvolvesadeliberateapproachthatstartswithleadershipcommitmentandthecleararticulationofanewvisionandvalues.Itinvolvesengagingemployees,aligninghiringandrewardsystemstothesevalues,andreinforcingthemthroughconsistentpoliciesandcommunication.sayingAIwillimpacttheirjobs.Furthering9thiscommitmenttoskillingandworkforceresilience,theInfocomMediaDevelopmentAuthority(IMDA),forexample,recentlycommittedtoreskilling18,000SingaporeansinAIandadjacentskillsthroughtheseskillingprogrammes.10Theseeffortshavebornefruit–sincetheintroductionoftheprogrammein2015,1in4eligibleSingaporeanshasparticipatedinSkillsFutureSingaporeacrossmanyindustries,participatingcompaniesandeducationprogrammes.11–Agoodexampleis“sideprojecttime”,or“the20%concept”,popularizedbyGooglebutwhichisalsocurrentlyusedbyfirmslikeAtlassian15andRakuten.16Theseprogrammeshaveenabledemployeestofocusonpersonalprojectsnotdirectlytiedtoajobtaskduringtheirtimeatwork.Sideprojectsenableemployeestoexplorepersonalinterestsandbuildtransferableskillsoutsidetheirjobspecialization,helpingretention,improvingmoraleandencouragingcreativity.17Italsoenablescompaniestoboosttheirinnovativepotential–somethinglargecompaniesstrugglewith.18Theoutputfromtheseprogrammescanbesignificant:GmailandAdSensebotharosefrompastsideprojectsatGoogle.19Organizationalchange–setupandmakeuseofinternaljobmarketsCreateadynamicinternaljobmarketplacethathelpsemployeestransitionintorolesastechnologyandbusinessconditionschange.–DevelopinginternaljobmarketsenablesemployeestounderstandtheopportunitiesavailabletothemwithinthefirmandprovidesaJobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkit8Consideration2Jobquality2MaintaininghighjobqualityinvolvesworkerinclusioninLLMgovernance,involvingdiverseteamsinLLMdevelopmentandpromotingawarenessofLLMbenefits.ConcernshavealsoarisenthatLLMsandothergenerativeAItechnologiescoulderodejobquality,potentiallymakingjobsandworkplaceslessfulfillingandlessinclusiveandfair.Additionally,increasingconcernsaboutbiasinLLMshighlighttheriskofinherentsystemicdiscriminationinthesemodels,whichcouldexacerbateexistinginequalities.Despitetheseconcerns,emergingdatashowthatLLMSandAItechnologiesalsohavethepotentialtoimprovejobquality.AsdiscussedinJobsofTomorrow:LargeLanguageModelsandJobs,theuseofLLMscouldautomatethemoreroutineandrepetitivetasksonthejob,whichcouldotherwisedisengageworkers,whilemakingroomformorecreative,problem-solvingandindependentdecision-makingtasksonthejob,boostingworkerfulfilment.TheWorldEconomicForum’sGoodWorkFrameworkoffersarobustdefinitionofjobqualityandastrategictemplatetomaintainandimprovethequalityofworkinrapidlyevolvinglabourmarkets.Itoutlineskeyobjectivestocreateabetterfutureofwork,includingpromotingfairwagesandresponsibletechnologyuse,providingflexibilityandprotectionforallevidencethatLLMshaveimpactedworker’swell-being.20Yet,workeranxietyhasincreased.A2023surveybytheAmericanPsychologicalAssociationfoundthat38%ofworkersareworriedabouttheimpactofAIontheirjobs;roughlyhalfofthosewiththeseconcernssaythatworknegativelyaffectstheirmentalhealth,comparedtoonly29%ofthosewithoutconcerns.21AnothercriticalconcernisthatLLMscouldinducebiasinresponsesthatleadtodecision-making,highlightingtheimportanceofadheringtotheGoodWorkFramework’sobjectiveofdrivingdiversity,equityandinclusion.Forinstance,persistentpatternsofracialandethnicdiscriminationcouldbereflectedinhiringdatasets,whichcouldskewalgorithmsusedtosortandfilterjobcandidatesintheapplicationscreeningprocess.22Inthesamevein,mostLLMsaretrainedonEnglishtexts,whichcouldleadLLMstoproduceoverwhelminglyAnglo-centricresponses.23Furthermore,theburdensofadaptingLLM-inducedchangesinjobscoulddisproportionatelyfallonparticularpopulationgroupswhomaybeoverorunderrepresentedinaffectedoccupations,suchaswomenandethnicminorities.24LLMscouldautomatethemoreroutineandrepetitivetasksonthejob,whichcouldotherwisedisengageworkers,whilemakingroomformorecreative,problemsolvingandindependentdecision-makingtasksonthejob,boostingworkerfulfilment.workers,ensuringhealthandwell-being,drivingdiversity,equityandinclusion,andcreatingacultureofcontinuouslearningandemployability.Businessesmustmoveproactivelyandwithurgencytoaddresstheseconcerns,particularlyaroundjobquality,agencyandinclusivity,iftheyaretoestablishthetrustneededtounlockthepositivepotentialofLLMs.OfparticularrelevancewhenincorporatingLLMsandotherAItechnologiesonthejobistheframework’sobjectiveofmaintainingthehealthandtotalwell-beingofworkers.ThereisnotyetstrongJobsofTomorrowLargeLanguageModelsandJobs–ABusinessToolkit92.1ResponsiblebusinessstrategiesWorkerawareness–ensureinclusivedesignofAIandLLMsapplicationsGoodWorkFramework.30SuchmechanismsensureongoingassessmentandrefinementofLLMapplications,focusingontheirethical,impartialandeffectiveusewithinthecompany.–SeveralleadingcompanieshavebeenrecognizedfortheireffortsinadoptingtransparentandinclusiveAIgovernance,whichcanbetailoredtoLLMsspecifically.Googlehasimplementedathree-tieredgovernancestructuretooverseetheresponsibleuseofAI.ThisstructureincludesmultidisciplinaryreviewersandproductteammemberswhoseprimaryfocusisondevelopingAIapplicationsthatyieldsocialbenefits.31IBMisknownforitscommitmenttotrustworthyAI;theyhaveanAIEthicsBoardandhavepublishedclearprinciplesontrustandtransparencyinAI.IBMemphasizesAIthatisexplainable,fairandsecure,andtheyprovidetoolsforbusinessestodetectandmitigatebiasinAIsystems.32AccentureestablishedaresponsibleAI(RAI)complianceprogrammetoinstitutionalizeitsRAIprinciplesintopracticebyembeddingRAIacrossitsentireenterprise–fromdevelopmentanduse,todeploymentandpost-deploymentmonitoring.EmphasizethecollaborativeandinclusivedevelopmentofAIapplicationsandLLMs.Thisinvolvesestablishingcross-functionalteamswithdiversebackgroundsandactivelyinvolvingemployeesinthedesignandimplementationofcompany-specificAIsystemsandLLMs.–LLMshavethegreatestpositiveimpactwhendeveloped,testedandpilotedbyteamswithadiversem

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论