版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培优拓展❸巧处理数列中的创新与数学文化近几年高考,以数学文化为背景的数列问题,层出不穷,让人耳目一新,同时它也使考生们受困于背景陌生,阅读受阻.解决此类问题的关键是“去除背景,提取信息”.一、数学文化中的等差、等比数列例1(1)(2022新高考Ⅱ,3)中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图1是某古建筑物中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图.其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步的比分别为,若k1,k2,k3是公差为0.1的等差数列,直线OA的斜率为0.725,则k3=(
)图1图2A.0.75 B.0.8
C.0.85
D.0.9D(2)(2023山西朔州二模)“中国剩余定理”又称“孙子定理”,最早可见于我国南北朝时期的数学著作《孙子算经》.此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.此定理讲的是关于整除的问题,现将1到2023这2023个数中,能被7除余1且被9除余1的数按从小到大的顺序排成一列,构成数列{an},则该数列的和为(
)A.30014 B.30016 C.33297 D.33299C解题技巧
数学文化与等差、等比数列问题的解题步骤
读懂题意去除数学文化的背景,读懂题意构建模型由题意,构建等差数列或等比数列模型求解模型利用等差数列或等比数列的知识求解,求项、求和二、数学文化中的递推关系例2(1)(2023安徽淮南一模)斐波那契数列因以兔子繁殖为例子而被引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{an}可以用如下方法定义:an+2=an+1+an,且a1=a2=1,若此数列各项除以4的余数依次构成一个新数列{bn},则数列{bn}的前2023项的和为(
)A.2023 B.2024 C.2696 D.2697D解析
因为an+2=an+1+an,且a1=a2=1,所以数列{an}为1,1,2,3,5,8,13,21,34,55,89,144,…,此数列各项除以4的余数依次构成一个新数列{bn}为1,1,2,3,1,0,1,1,2,3,1,0,…,数列中的项以6为周期重复出现,2
023=337×6+1,所以数列{bn}的前2
023项的和S2
023=337×(1+1+2+3+1+0)+1=2
697.故选D.(2)(2023湖北武汉二模)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为(
)A.196 B.197 C.198
D.199C解析
设该数列为{an},则a1=2,a2=3,a3=6,a4=11;由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…,所以数列{an+1-an}是以a2-a1=1为首项,2为公差的等差数列,所以an+1=a1+(a2-a1)+(a3-a2)+…+(an+1-an)=2+n×1+n(n-1)×2=n2+2,所以a15=142+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿买卖居间合同范本
- 零售基础 课件 第二章 零售市场战略
- 2024版物业服务合同详细条款2篇
- 银行房产抵押贷款合同
- 2024年度挖掘机短期租赁具体合同2篇
- 绵阳2024年度房屋租赁合同解除条件说明
- 个人借款购房协议
- 基于2024年度市场趋势的市场调研合同
- 2024年度建筑垃圾减量化运输服务合同2篇
- 合伙企业协议书
- 2024年机械员考试题库含完整答案(必刷)
- 大学生职业生涯规划书-酒店管理和数字化运营
- 大学语文 课件 勤奋、诚实、有选择地读书
- 亚马逊平台分析报告
- 机务优良作风-教学内容
- 积极心理学-团体心理课
- 糖尿病酮症酸中毒的急诊处置
- 2024年度国际市场营销课件
- 中国古诗词艺术歌曲的审美特征与美学价值
- 简单公园设计平面图手绘图
- 林业废弃物生物质能源化利用
评论
0/150
提交评论