自贡市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第1页
自贡市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第2页
自贡市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第3页
自贡市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第4页
自贡市重点中学2024年八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自贡市重点中学2024年八年级数学第二学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列命题中,是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角形相等的四边形是矩形C.顺次连结平行四边形各边中点所得四边形是平行四边形 D.一组邻边相等的平行四边形是正方形2.将点A(-2,-3)向左平移3个单位,再向上平移2个单位得到点B,则B的坐标是()A.(1,-3) B.(-2,1) C.(-5,-1) D.(-5,-5)3.有一组数据7、11、12、7、7、8、11,下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差为54.如图,在中,,,,为边上一动点,于点,于点,则的最小值为()A.2.4 B.3 C.4.8 D.55.要使分式有意义,则x的取值范围是().A.x≠±1 B.x≠-1 C.x≠0 D.x≠16.下列事件中,属于随机事件的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.一组对边平行另一组对边相等的四边形是平行四边形C.矩形的两条对角线相等D.菱形的每一条对角线平分一组对角7.下列式子正确的是(

)A.若,则x<y B.若bx>by,则x>yC.若,则x=y D.若mx=my,则x=y8.关于函数,下列结论正确的是()A.图像必经过B.若两点在该函数图像上,且,C.函数的图像向下平移1个单位长度得的图像D.当时,9.如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为()A. B. C. D.10.(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.cmB.cmC.cmD.cm11.已知是完全平方式,则的值为()A.6 B. C.12 D.12.某机械厂七月份生产零件50万个,计划八、九月份共生产零件万个,设八、九月份平均每月的增长率为x,那么x满足的方程是A. B.C. D.二、填空题(每题4分,共24分)13.点P(m-1,2m+3)关于y轴对称的点在第一象限,则m的取值范围是_______.14.若的整数部分为,小数部分为,则的值是___.15.如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.16.函数y=中,自变量x的取值范围是_____.17.“我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=0.5千米,则该沙田的面积为________________平方千米.18.若已知a、b为实数,且+2=b+4,则.三、解答题(共78分)19.(8分)如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-x-与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)若S=S△CDE+S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.20.(8分)在平面直角坐标系中,O为坐标原点.(1)已知点A(3,1),连接OA,作如下探究:探究一:平移线段OA,使点O落在点B,设点A落在点C,若点B的坐标为(1,2),请在图①中作出BC,点C的坐标是__________.探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D,则点D的坐标是__________;连接AD,则AD=________(图②为备用图).(2)已知四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,若所得到的四边形为平行四边形,则点C的坐标是____________.21.(8分)如图,在正方形中,已知于.(1)求证:;(2)若,求的长.22.(10分)近年来,共享汽车的出现给人们的出行带来了便利,一辆型共享汽车的先期成本为8万元,如图是其运营收入(元)与运营支出(元)关于运营时间(月)的函数图象.其中,一辆型共享汽车的盈利(元)关于运营时间(月)的函数解析式为(1)根据以上信息填空:与的函数关系式为_________________;(2)经测试,当,共享汽车在这个范围内运营相对安全及效益较好,求当,一辆型共享汽车的盈利(元)关于运营时间(月)的函数关系式;(注:一辆共享汽车的盈利=运营收入-运营支出-先期成本)(3)某运营公司有型,型两种共享汽车,请分析一辆型和一辆型汽车哪个盈利高;23.(10分)计算(1)(2)24.(10分)学校为了更新体育器材,计划购买足球和篮球共100个,经市场调查:购买2个足球和5个篮球共需600元;购买3个足球和1个篮球共需380元。(1)请分别求出足球和篮球的单价;(2)学校去采购时恰逢商场做促销活动,所有商品打九折,并且学校要求购买足球的数量不少于篮球数量的3倍,设购买足球a个,购买费用W元。①写出W关于a的函数关系式,②设计一种实际购买费用最少的方案,并求出最少费用。25.(12分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)26.如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.(1)求证△CBE≌△ACD(2)求线段BE的长

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据菱形、矩形、平行四边形、正方形的判定定理逐项判断即可.【详解】解:A.对角线互相垂直的平行四边形是菱形,此选项不符合题意;B.对角形相等的平行四边形是矩形,此选项不符合题意;C.顺次连结平行四边形各边中点所得四边形是平行四边形,此选项符合题意;D.一组邻边相等的矩形是正方形,此选项不符合题意;故选:C.【点睛】本题考查的知识点是菱形、矩形、平行四边形、正方形的判定定理,熟记菱形、矩形、平行四边形、正方形的判定定理内容是解此题的关键.2、C【解析】由题中平移规律可知:点B的横坐标为-2-3=-5;纵坐标为-3+2=-1,可知点B的坐标是(-5,-1).故选C.3、A【解析】

根据中位数.平均数.极差.众数的概念求解.【详解】这组数据按照从小到大的顺序排列为:7.7.7.8.11.11.12,则中位数为8,平均数为,众数为7,极差为,故选A.【点睛】本题考查了加权平均数,中位数,众数,极差,熟练掌握概念是解题的关键.4、C【解析】

根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.【详解】如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选C.【点睛】此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.5、D【解析】

根据分式的基本概念即可解答.【详解】由分式的基本概念可知,若分式有意义,则分母不为零,即,解得:x≠1.故选D.【点睛】本题主要考查分式的基本概念,熟悉掌握是关键.6、B【解析】

根据平行四边形的判定、矩形的性质、菱形的性质结合随机事件与必然事件的概念逐一进行分析判断即可.【详解】A.一组对边平行且一组对角相等的四边形是平行四边形,正确,是必然事件,故不符合题意;B.一组对边平行另一组对边相等的四边形是平行四边形或等腰梯形,是随机事件,故符合题意;C.矩形的两条对角线相等,正确,是必然事件,故不符合题意;D.菱形的每一条对角线平分一组对角,正确,是必然事件,故不符合题意,故选B.【点睛】本题考查了随机事件与必然事件,涉及了平行四边形的判定、矩形的性质、菱形的性质等,熟练掌握相关的知识是解题的关键.7、C【解析】A选项错误,,若a>0,则x<y;若a<0,则x>y;B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;C选项正确;D选项错误,当m=0时,x可能不等于y.故选C.点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.8、B【解析】

根据一次函数的性质,依次分析选项可得答案.【详解】根据一次函数的性质,依次分析可得,A、x=-2时,y=-2×(-2)-1=3,故图象必经过(-2,3),故错误,B、k<0,则y随x的增大而减小,时,,故正确,C、函数的图像向下平移1个单位长度得的图像,故错误;D、由y=-2x-1得,∵x>0.5,∴解得,y<0,故选项D错误.故选B.【点睛】本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系.9、C【解析】

首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.【详解】如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=1.故选C.【点睛】本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.10、B。【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,在Rt△AOB中,,∵BD×AC=AB×DH,∴DH=cm。在Rt△DHB中,,AH=AB﹣BH=cm。∵,∴GH=AH=cm。故选B。考点:菱形的性质,勾股定理,锐角三角函数定义。11、D【解析】

根据完全平方式的结构特征,即可求出m的值.【详解】解:∵是完全平方式,∴;故选择:D.【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.12、C【解析】

主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【详解】依题意得八、九月份的产量为10(1+x)、10(1+x)2,∴10(1+x)+10(1+x)2=111.1.故选C.【点睛】本题考查了由实际问题抽象出一元二次方程.增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.二、填空题(每题4分,共24分)13、-1.5<m<1【解析】

首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式组,然后求解不等式组即可得出m的取值范围.【详解】解:∵P(m-1,2m+3)关于y轴对称的点在第一象限,

∴P点在第二象限,

解得:-1.5<m<1,

故答案为:-1.5<m<1.【点睛】本题考查关于y轴对称的点的坐标特点,各象限内点的坐标符号,解一元一次不等式组.解答本题的关键是判断出P点所在象限并据此列出不等式组.14、3【解析】

先估算,再估算,根据6-的整数部分为x,小数部分为y,可得:x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,y=,所以(2x+)y=,故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.15、1【解析】试题解析:∵Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,∴CE=CA=2,∠ECF=∠ACB=90°,∴点E、C、B共线,∴BE=EC+BC=2+1=1.16、x≥1.【解析】

根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,自变量x的取值范围是x≥1.故答案为x≥1.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.17、7.1【解析】

直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【详解】解:∵12+122=132,∴三条边长分别为1里,12里,13里,构成了直角三角形,∴这块沙田面积为:×1×100×12×100=7100000(平方米)=7.1(平方千米).故答案为:7.1.【点睛】此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.18、1【解析】试题分析:因为+2=b+4有意义,所以,所以a=5,所以b+4=0,所以b=-4,所以a+b=5-4=1.考点:二次根式.三、解答题(共78分)19、(1)C(-13,0),E(-5,-3),;(2)32;(3)见解析.【解析】

(1)利用坐标轴上点的特点确定出点C的坐标,再利用直线的交点坐标的确定方法求出点E坐标,进而得到点B坐标,最后用待定系数法求出直线AB解析式;(2)直接利用直角三角形的面积计算方法和直角梯形的面积的计算即可得出结论,(3)先求出直线AB与x轴的交点坐标,判断出点C不在直线AB上,即可.【详解】(1)在直线中,令y=0,则有0=,∴x=﹣13,∴C(﹣13,0),令x=﹣5,代入,解得y=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为;(2)由(1)知E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32;(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC==32.5,∴S≠S△AOC,理由:由(1)知,直线AB的解析式为,令y=0,则0=,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S△AOC≠S.【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,对称的性质,待定系数法,三角形,直角梯形的面积的计算,解(1)的关键是确定出点C,E的坐标,解(2)的关键是特殊几何图形的面积的计算,解(3)的关键是确定出直线AB与x轴的交点坐标,是一道常规题.20、(1)探究一图见解析;(4,3);探究二(-1,3);2;(2)(a+c,b+d)【解析】

(1)探究一:由于点A(3,1),连接OA,平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),由此即可得到平移方法,然后利用平移方法即可确定在图1中作出BC,并且确定点C的坐标;探究二:将线段OA绕点O逆时针旋转90度,设点A落在点D,根据旋转的性质和方向可以确定点D的坐标;(2)已知四点O(0,0),A

(a,b),C,B(c,d),顺次连接O,A,C,B.

若所得到的四边形为平行四边形,那么得到OA∥CB,根据平移的性质和已知条件即可确定点C的坐标;【详解】解:(1)探究一:∵点A(3,1),连接OA,平移线段OA,使点O落在点B.

设点A落在点C,若点B的坐标为(1,2),

则C的坐标为(4,3),作图如图①所示.探究二:∵将线段OA绕点O逆时针旋转90度,

设点A落在点D.

则点D的坐标是(-1,3),如图②所示,由勾股定理得:OD2=0A2=12+32=10,AD===2.(2)(a+c,b+d)∵四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,所得到的四边形为平行四边形,∴OA綊BC.∴可以看成是把OA平移到BC的位置.∴点C的坐标为(a+c,b+d).【点睛】本题考查坐标与图形的变换、平行四边形的性质等知识,综合性比较强,要求学生熟练掌握相关的基础知识才能很好解决这类问题.21、(1)见解析;(2)【解析】

(1)由正方形的性质可得BC=CD,∠B=∠BCD=90°,利用直角三角形中两个锐角互余以及垂直的定义证明∠BEC=∠CFD即可证明:△BCE≌△CDF;(2)由(1)可知:△BCE≌△CDF,所以CF=BE=2,由相似三角形的判定方法可知:△BCE∽HCF,利用相似三角形的性质:对应边的比值相等即可求出HF的长.【详解】(1)证明:在正方形中,∴,∵,∴,又∵,∴,∴;(2)解:∵∴,∵,∴,∴,在Rt△BCE中,BC=AB=6,BE=2,∴,∴;【点睛】本题考查了正方形的性质、相似三角形的判定和性质以及全等三角形的判定和性质,题目的综合性很强,但难度不大.22、(1);(2);(3)见解析.【解析】

(1)设w1=kx,将(10,40000)代入即可得到k的值;(2)根据盈利=运营收入-运营支出-先期成本得出关系式;(3)分三种情况分析讨论.【详解】(1)设w1=kx,将(10,40000)代入可得:40000=10k,解得k=4000,所以;(2)∵,∴,(3)若,则,解得;若,则,解得;若,则,解得,∴当时,一辆型汽车盈利高;当时,一辆型和一辆型车,盈利一样高;当时,一辆型汽车盈利高;【点睛】考查了一次函数的应用和一元一次不等式的应用,解题关键是理解题意得出数量关系,第(3)问要分情况进行讨论.23、.(1);(2)【解析】

(1)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可;(2)首先将二次根式化为最简二次根式,然后根据二次根式的乘除运算法则计算即可.【详解】解:(1)原式=;(2)原式=..【点睛】本题考查二次根式的乘除运算,解题的关键是熟练运用二次根式的性质和运算法则.24、(1)足球每个100元,篮球每个80元;(2)①W=18a+7200;②足球75个,篮球25个,费用最低,最低费用为8550元【解析】

(1)根据“购买金额=足球数量×足球单价+篮球的数量×篮球单价”,在两种情况下分别列方程,组成方程组,解方程组即可;(2)①设购买足球a个,则购买篮球的数量为(100-a)个,则总费用(W)=足球数量×足球单价×0.9+篮球的数量×篮球单价×0.9,据此列函数式整理化简即可;②

根据购买足球的数量不少于篮球数量的3倍,

且足球的数量不超过总数100,分别列一元一次不等式,组成不等式组,解不等式组求出a的范围;由于W和a的一次函数,k=18>0,W随a增大而增大,随a的减小而减小,所以当a取最小值a时,W值也为最小,从而求出W的最小值,即最低费用.【详解】(1)解:设足球每个x元,篮球每个y元,由题意得解得:答:足球每个100元,篮球每个80元(2)解:①W=100×0.9a+80×0.9(100-a)=18a+7200,答:W关于a的函数关系式为W=18a+7200,②由题意得

,解得:75≤a≤100∵W=18a+7200,W随a的增大而增大,∴a=75时,W最小=18×75+7200=8550元,此时,足球75个,篮球25个,费用最低,最低费用为8550元.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意求出函数关系式,熟知一次函数的图像与性质.25、(1),理由见解析;(2);(3).【解析】

(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入计算即可.【详解】(1),理由如下:∵四边形是平行四边形,∴∥,.∵四边形是菱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论