重庆市江津中学2024届数学八年级下册期末教学质量检测试题含解析_第1页
重庆市江津中学2024届数学八年级下册期末教学质量检测试题含解析_第2页
重庆市江津中学2024届数学八年级下册期末教学质量检测试题含解析_第3页
重庆市江津中学2024届数学八年级下册期末教学质量检测试题含解析_第4页
重庆市江津中学2024届数学八年级下册期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市江津中学2024届数学八年级下册期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.分式可变形为(

)A.

B.

C.

D.2.下列事件为必然事件的是()A.抛掷一枚硬币,落地后正面朝上B.篮球运动员投篮,投进篮筐;C.自然状态下水从高处流向低处;D.打开电视机,正在播放新闻.3.如图,在矩形ABCD中对角线AC、BD相交于点O,∠ACB=60°,则∠AOB的大小为()A.30° B.60° C.120° D.150°4.若分式的值为0,则x的值为A.3 B. C.3或 D.05.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于()A.100° B.105° C.115° D.120°6.在数轴上与原点的距离小于8的点对应的x满足()A.x<8 B.x>8 C.x<-8或x>8 D.-8<x<87.如果成立,那么实数a的取值范围是()A. B. C. D.8.如图,在中,D是BC边的中点,AE是的角平分线,于点E,连接DE,若,,则AC的长度是()A.5 B.4 C.3 D.29.关于x的分式方程有增根,则a的值为()A.﹣3 B.﹣5 C.0 D.210.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=50°,则∠2的度数为()A.30° B.40° C.50° D.60°11.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.12.下列代数式属于分式的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知中,,则的度数是_______度.14.如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.15.如图,在平行四边形中,,将平行四边形绕顶点顺时针旋转到平行四边形,当首次经过顶点时,旋转角__________.16.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.17.关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标是_____.18.一组数据x1,x2,…,xn的平均数是2,方差为1,则3x1,3x2,…,3xn,的方差是_____.三、解答题(共78分)19.(8分)(1)先化简,再求值:÷(﹣),其中a2+3a﹣1=1.(2)若关于x的分式方程+1的解是正数,求m的取值范围.20.(8分)如图,在菱形ABCD中,对角线AC,相交于点O,cm,cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设cm,cm,cm小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数的图象①按下表自变量的值进行取点、画图、测量,得到了与x的几组对应值:x/cm00.511.522.533.54/cm1.120.50.711.121.582.062.553.04②在所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数的图象;(2)画函数的图象在同一坐标系中,画出函数的图象;(3)根据画出的函数的图象、函数的图象,解决问题①函数的最小值是________________;②函数的图象与函数的图象的交点表示的含义是________________;③若,AP的长约为________________cm21.(8分)如图,点在同一直线上,,,.求证:.22.(10分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.23.(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.24.(10分)如图1,在平面直角坐标系中,一次函数的图象与轴,轴分别交于点,点,过点作轴,垂足为点,过点作轴,垂足为点,两条垂线相交于点.(1)线段,,的长分别为_______,_________,_________;(1)折叠图1中的,使点与点重合,再将折叠后的图形展开,折痕交于点,交于点,连接,如图1.①求线段的长;②在轴上,是否存在点,使得为等腰三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由.25.(12分)在平面直角坐标系中,三个顶点的坐标分别为(–2,1),(–1,4),(–3,2).(1)写出点关于点成中心对称点的坐标;(2)以原点为位似中心,位似比为2:1,在轴的左侧画出C放大后的,并直接写出点的坐标.26.如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据分式的性质,可化简变形.【详解】.故答案为:D【点睛】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.2、C【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币,落地后正面朝上是随机事件;

B、篮球运动员投篮,投进篮筺是随机事件;

C、自然状态下水从高处流向低处是必然事件;

D、打开电视机,正在播放新闻是随机事件;

故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【解析】

根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC=∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵矩形ABCD的对角线AC,BD相交于点O,

∴OB=OC,

∴∠OBC=∠ACB=60°,

∴∠AOB=∠OBC+∠ACB=60°+60°=120°.

故选C.【点睛】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.4、A【解析】

根据分式的值为零的条件可以求出x的值.【详解】由分式的值为零的条件得x-1=2,且x+1≠2,解得x=1.故选A.【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.5、B【解析】分析:根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数即可.详解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.故选B.点睛:本题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题的关键.6、D【解析】

解:数轴上对应x的点到原点的距离可表示为|x|.由题意可知解得故选D.7、B【解析】

即故选B.8、A【解析】

延长CE,交AB于点F,通过ASA证明△EAF≌△EAC,根据全等三角形的性质得到AF=AC,EF=EC,根据三角形中位线定理得出BF=1,即可得出结果.【详解】解:延长CE,交AB于点F.

∵AE平分∠BAC,AE⊥CE,

∴∠EAF=∠EAC,∠AEF=∠AEC,

在△EAF与△EAC中,∴△EAF≌△EAC(ASA),∴AF=AC,EF=EC,又∵D是BC中点,∴BD=CD,∴DE是△BCF的中位线,∴BF=1DE=1.∴AC=AF=AB-BF=7-1=5;故选A.【点睛】此题考查的是三角形中位线定理、全等三角形的判定与性质等知识;熟练掌握三角形中位线定理,证明三角形全等是解题的关键.9、B【解析】

分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.【详解】分式方程去分母得:x−2=a,由分式方程有增根,得到x+3=0,即x=−3,把x=−3代入整式方程得:a=−5,故选:B.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10、C【解析】

作BF∥a,根据平行线的性质即可求解.【详解】解:作BF∥a,∴∠3=∠1=50°,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,∴∠4=40°,∵BF∥a,a∥b,∴BF∥b,∴∠5=∠4=40°,∴∠2=180°﹣∠5﹣90°=50°,故选:C.【点睛】此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行求解.11、B【解析】

根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.12、A【解析】

形如(A、B均为整式,B中有字母,)的式子是分式,根据分式的定义解答.【详解】根据分式的定义得到:是分式,、、均不是分式,故选:A.【点睛】此题考查分式的定义,熟记定义掌握定义中的A及B的要求是解答问题的关键.二、填空题(每题4分,共24分)13、100【解析】

根据平行四边形对角相等的性质,即可得解.【详解】∵中,,∴故答案为100.【点睛】此题主要考查平行四边形的性质,熟练掌握,即可解题.14、【解析】

先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.【详解】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,

∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,

∴AB=2EF,DC=DF+CF=8,

作DH⊥BC于H,

∵AD∥BC,∠B=90°,

∴四边形ABHD为矩形,

∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,

在Rt△DHC中,DH=,∴EF=DH=.故答案为:.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.15、36°【解析】

由旋转的性质可知:▱ABCD全等于▱ABCD,得出BC=BC,由等腰三角形的性质得出∠BCC=∠C,由旋转角∠ABA=∠CBC,根据等腰三角形的性质计算即可.【详解】∵▱ABCD绕顶点B顺时针旋转到▱ABCD,∴BC=BC,∴∠BCC=∠C,∵∠A=72°,∴∠C=∠C=72°,∴∠BCC=∠C,∴∠CBC=180°−2×72°=36°,∴∠ABA=36°,故答案为36.【点睛】此题考查旋转的性质,等腰三角形的性质,解题关键在于掌握其性质得出∠BCC=∠C.16、b>c>a.【解析】

由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.17、(m,0).【解析】分析:关于x的一元一次方程ax+b=0的根是x=m,即x=m时,函数值为0,所以直线过点(m,0),于是得到一次函数y=ax+b的图象与x轴交点的坐标.详解:关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标为(m,0).故答案为:(m,0).点睛:本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.18、1【解析】

根据x1,x2,x3,…xn的方差是1,可得出3x1,3x2,3x3,…,3xn的方差是1×32即可.【详解】∵数据:x1,x2,x3,…,xn的平均数是2,方差是1,∴数据3x1,3x2,3x3,…,3xn的方差是1×1=1.故答案为:1.【点睛】本题考查了方差,若在原来数据前乘以同一个数,方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.三、解答题(共78分)19、(1);(2)m>1且m≠2.【解析】

(1)根据分式混合运算顺序和运算法则化简原式,再将a2+2a-1=1,即a2+2a=1整体代入可得;

(2)解分式方程得出x=m-1,由分式方程的解为正数得m-1>1且m-1≠2,解之即可.【详解】(1)原式=÷=•==,当a2+2a﹣1=1,即a2+2a=1时,原式==.(2)解方程=+1,得:x=m﹣1,根据题意知m﹣1>1且m﹣1≠2,解得:m>1且m≠2.【点睛】本题考查分式的混合运算、解分式方程,解题关键是熟练掌握分式的混合运算顺序和运算法则.20、(1)①见解析;②见解析;(2)见解析;(3)①y1的最小值是0.5;②AP的长为2cm;③x=2.1.【解析】

(1)①由表格得点(x,y1)即可;②先由①描点,再用光滑曲线顺次连接各点,即可得出函数图象;利用数形结合,根据当x=0.5时,得出y1值,填入表格即可;(2)过点F作FM⊥AC于M,由菱形的性质各三角形中位线性质求得FM=1,PM=3-x,所以y2=,再利用描点法画出y2的图象即可;(3)①利用数形结合,由函数y1的图象求解即可;②过点F作FM⊥AC于M,可利用几何背景意义求解;③因PC=AC-AP=4-x,由PE=PC,则y1=4-x,利用图象求解即可.【详解】解:(1)①如下表:图象如图所示:x/cm00.511.522.533.54y1/cm1.12

0.710.50.711.121.582.062.553.04

②过点F作FM⊥AC于M,如图,

∵菱形ABCD,∴AC⊥BD,∴FM∥BD,∵F是BC的中点,∴M是OC的中点,∴FM=1,OM=1,∴PM=3-x,∴PF2=PM2+MF2,∴y2=,利用描点法作出图象,如图所示:(3)如上图;①由图象可得:函数y1的最小值是0.5;②答案不唯一,如,如:用几何背景意义可知:函数y1的图象与函数y2的图象的交点表示的含义是:当PE=PF=1.12cm时,由图象可得:AP的长为2cm;③∵PC=AC-AP=4-x,∵PE=PC,∴y1=4-x,利用图象可得:x=2.1.故答案为①0.5;②当PE=PF=1.12cm时,AP的长为2cm;③2.1.【点睛】本题考查动点函数的函数图象,菱形的性质,以及勾股定理的应用.熟练掌握用描点法作函数图象是解题关键.21、详见解析【解析】

先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.【详解】解:证明:,∴△ABC和△DEF都是直角三角形,,即,在Rt△ABC和Rt△DFE中,,∴Rt△ABC≌Rt△DFE(HL),∴.【点睛】本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.22、(1)证明过程见解析;(2)8.【解析】

(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE==4,∴CD=2DE=8考点:(1)平行四边形的性质;(2)全等三角形的判定与性质23、(1)2;(2)【解析】分析:(1)根据等角对等边即可证得BF=AB,然后根据FC=BC-BF即可求解;(2)过B作AF的垂线BG,垂足为H.由(1)得:四边形AFCD为平行四边形且AB=BF=3,在RT△BHF中求得BH的长,利用勾股定理即可求解.

详解:(1)AD∥BC,AE∥CD,∴四边形AFCD是平行四边形∴AD=CF∵AF平分∠BAD∴∠BAF=∠DAF∵AD∥BC∴∠DAF=∠AFB∴∠BAF=∠AFB∴AB=BF∵AB=3,BC=5∴BF=3∴FC=5-3=2∴AD=2.(2)如图,过点B作BH⊥AF交AF于H由(1)得:四边形AFCD为平行四边形且AB=BF=3,∴AF=CD,AF∥CD∴FH=AH,∠AFB=∠C∵∠C=30°∴∠HFB=30°∴BF=2BH∵BF=3∴BH=∴FH=,∴AF=2×=3∴CD=3.点睛:本题考查了平行四边形的性质与判定,勾股定理的应用,解本题的关键是正确的作出辅助线.24、(1)8;4;;(1)①线段AD的长为2;②点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).【解析】

(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,利用矩形的性质及勾股定理,可得出AB,BC,AC的长;

(1)①设AD=a,则CD=a,BD=8-a,在Rt△BCD中,利用勾股定理可求出a的值,进而可得出线段AD的长;

②设点P的坐标为(0,t),利用两点间的距离公式可求出AD1,AP1,DP1的值,分AP=AD,AD=DP及AP=DP三种情况,可得出关于t的一元二次方程(或一元一次方程),解之即可得出t的值,进而可得出点P的坐标.【详解】解:(1)如图:当x=0时,y=-1x+8=8,

∴点C的坐标为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论