四川省岳池县联考2024年八年级数学第二学期期末考试试题含解析_第1页
四川省岳池县联考2024年八年级数学第二学期期末考试试题含解析_第2页
四川省岳池县联考2024年八年级数学第二学期期末考试试题含解析_第3页
四川省岳池县联考2024年八年级数学第二学期期末考试试题含解析_第4页
四川省岳池县联考2024年八年级数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省岳池县联考2024年八年级数学第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.米 B.米 C.米 D.米2.不等式2x-1≤5的解集在数轴上表示为()A. B. C. D.3.如图,在中,平分,,则的周长为()A.4 B.6 C.8 D.124.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形5.下列事件为必然事件的是()A.抛掷一枚硬币,落地后正面朝上B.篮球运动员投篮,投进篮筐;C.自然状态下水从高处流向低处;D.打开电视机,正在播放新闻.6.如图,这个图案是3世纪我国汉代的赵爽在注释《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以围成一个大正方形,中空的部分是一个小正方形(黄实),赵爽利用弦图证明的定理是()A.勾股定理 B.费马定理 C.祖眇暅 D.韦达定理7.如图,已知一次函数的图象与轴交于点,则根据图象可得不等式的解集是()A. B. C. D.8.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,169.若样本x1+1,x2+1,x3+1,…,xn+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,xn+2,下列结论正确的是()A.平均数为18,方差为2 B.平均数为19,方差为2C.平均数为19,方差为3 D.平均数为20,方差为410.到三角形三条边的距离相等的点是三角形()的交点.A.三条中线 B.三条角平分线 C.三条高 D.三条边的垂直平分线二、填空题(每小题3分,共24分)11.计算:=________.12.如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是______.13.一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.14.要使代数式有意义,则的取值范围是________.15.当x___________时,是二次根式.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).17.分解因式2x3y﹣8x2y+8xy=_____.18.在正比例函数y=(2m-1)x中,y随x增大而减小,则m的取值范围是_____.三、解答题(共66分)19.(10分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.(1)求点A的坐标及直线的函数表达式;(2)连接,求的面积.20.(6分)解关于x的方程:21.(6分)如图在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴负半轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.(1)求点B的坐标;(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小:如改变,请说明理由;(3)连接OQ,当OQ∥AB时,求P点的坐标.22.(8分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?23.(8分)如图,在正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.求证:AE=DF.24.(8分)如图,△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.25.(10分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:投进个数10个8个6个4个人数1个5人1人1人(1)请计算甲组平均每人投进个数;(1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?26.(10分)在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.(1)当,时,求的长;(2)若,,且轴,判断四边形的形状,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:5纳米=5×10﹣9,故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、A【解析】

先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】2x-1≤5,移项,得2x≤5+1,合并同类项,得2x≤6,系数化为1,得x≤3,在数轴上表示为:故选A.【点睛】本题考查了在数轴上表示不等式的解集,熟练掌握表示方法是解题的关键.不等式的解集在数轴上表示的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.3、C【解析】

在平行四边形ABCD中,AC平分∠DAB,则四边形ABCD为菱形,根据菱形的性质求周长.【详解】解:∵在中,平分,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=1.故选C.【点睛】本题考查了菱形的判定定理,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形,④对角线平分一组对角的平行四边形是菱形.4、C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.考点:命题与定理.5、C【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币,落地后正面朝上是随机事件;

B、篮球运动员投篮,投进篮筺是随机事件;

C、自然状态下水从高处流向低处是必然事件;

D、打开电视机,正在播放新闻是随机事件;

故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、A【解析】

根据图形,用面积法即可判断.【详解】如图,设大正方形的边长为c,四个全等的直角三角形的两个直角边分别为a,b故小正方形的边长为(b-a)∴大正方形的面积为c2=4×化简得【点睛】此题主要考查勾股定理的性质,解题的关键是根据图像利用面积法求解.7、D【解析】

,即,从图象可以看出,当时,,即可求解.【详解】解:,即,从图象可以看出,当时,,故选:.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值,是解答本题的关键.8、D【解析】

根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【详解】解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.

故选:D.【点睛】本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.9、B【解析】

根据平均数、方差的意义以及求解方法进行求解即可得.【详解】由题意可知:,==2,所以=,==2,故选B.【点睛】本题考查了平均数、方差的计算,熟练掌握平均数以及方差的计算公式是解题的关键.10、B【解析】

到三角形三条边距离相等的点是三角形的内心.【详解】解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.

故选:B.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题(每小题3分,共24分)11、﹣1【解析】

利用二次根式的性质将二次根式化简得出即可.【详解】解:=|1-|=﹣1.

故答案为:﹣1.【点睛】本题考查二次根式的化简求值,正确化简二次根式是解题关键.12、2≤MN≤5【解析】

根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.【详解】∵点P,M分别是CD,DE的中点,∴PM=CE,PM∥CE,∵点P,N分别是DC,BC的中点,∴PN=BD,PN∥BD,∵△ABC,△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,∴PM=PN=BD,∴MN=BD,∴点D在AB上时,BD最小,∴BD=AB-AD=4,MN的最小值2;点D在BA延长线上时,BD最大,∴BD=AB+AD=10,MN的最大值为5,∴线段MN的取值范围是2≤MN≤5.故答案为:2≤MN≤5.【点睛】此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.13、3.1【解析】

根据众数的定义先求出x的值,然后再根据方差的公式进行计算即可得.【详解】解:已知一组数据1,x,4,6,7的众数是6,说明x=6,则平均数=(1+6+4+6+7)÷5=15÷5=5,则这组数据的方差==3.1,故答案为3.1.【点睛】本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.14、且【解析】

分式的分母不等于零时分式有意义,且还需满足被开方数大于等于零的条件,根据要求列式计算即可.【详解】∵代数式有意义,∴,且,∴且,故答案为:且.【点睛】此题考查分式有意义的条件,二次根式被开方数的取值范围的确定,正确理解题意列出不等式是解题的关键.15、≤;【解析】

因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.【详解】因为是二次根式,所以,所以,故答案为.【点睛】本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.16、①②③.【解析】

根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【详解】由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15−9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19−9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000−1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点睛】此题考查一次函数的应用,解题关键在于结合函数图象进行解答.17、2xy(x﹣2)2【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,故答案为:2xy(x﹣2)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18、【解析】

根据正比例函数图象的增减性可求出m的取值范围.【详解】解:∵函数y=(2m-1)x是正比例函数,且y随x的增大而减小,

∴2m-1<0,

解得故答案为【点睛】本题考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.三、解答题(共66分)19、(1);(2)1.【解析】

(1)将x=-1代入得出纵坐标,从而得到点A的坐标;再用待定系数法求得直线的函数表达式;(2)连接,先根据解析式求得B,C,D的坐标,得出BO,CD的长,然后利用割补法求的面积,.【详解】解:(1)因为点A在直线上,且横坐标为,所以点A的纵坐标为,所以点A的坐标为.因为直线过点A,所以将代入,得,解得,所以直线的函数表达式为.(2)如图,连接BC,由直线,的函数表达式,易得点B的坐标为,点D的坐标为,点C的坐标为,所以.所以.【点睛】本题主要考查了两直线相交问题,要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长,对不规则的三角形面积可以使用割补法等方法.20、x=-5【解析】试题分析:方程左右两边同时乘以(x+1)(x-1),解出x以后要验证是否为方程的增根.试题解析:3(x+1)+2x(x-1)=2(x+1)(x-1)3x+3+2x2-2x=2x2-2x=-5.经检验x=-5为原方程的解.点睛:掌握分式方程的求解.21、(1)点B的坐标为B(3,);(2)∠ABQ=90°,始终不变,理由见解析;(3)P的坐标为(﹣3,0).【解析】

(1)如图,作辅助线;证明∠BOC=30°,OB=2,借助直角三角形的边角关系即可解决问题;(2)证明△APO≌△AQB,得到∠ABQ=∠AOP=90°,即可解决问题;(3)根据点P在x的负半轴上,再根据全等三角形的性质即可得出结果【详解】(1)如图1,过点B作BC⊥x轴于点C,∵△AOB为等边三角形,且OA=2,∴∠AOB=60°,OB=OA=2,∴∠BOC=30°,而∠OCB=90°,∴BC=OB=,OC==3,∴点B的坐标为B(3,);(2)∠ABQ=90°,始终不变.理由如下:∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠PAQ=∠OAB,∴∠PAO=∠QAB,在△APO与△AQB中,,∴△APO≌△AQB(SAS),∴∠ABQ=∠AOP=90°;(3)如图2,∵点P在x轴负半轴上,点Q在点B的下方,∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.又OB=OA=2,可求得BQ=3,由(2)可知,△APO≌△AQB,∴OP=BQ=3,∴此时P的坐标为(﹣3,0).【点睛】本题考查了等边三角形的性质以及全等三角形的判定及性质以及梯形的性质,注意利用三角形全等的性质解题的关键.22、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨【解析】

(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与

6.5<x≤8.0

的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.【详解】(1)(1)5.0<x≤6.5共有13个,则频数是13,6.5<x≤8.0共有5个,则频数是5,填表如下:分组划记频数2.0<x≤3.5正正一113.5<x≤5.0195.0<x≤6.5136.5<x≤8.0正58.0<x≤9.52合计50如图:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)因为在2.0至5.0之间的用户数为11+19=30,而30÷50=0.6,所以要使60%的家庭收费不受影响,我觉得家庭月均用水量应该定为5吨.【点睛】本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23、详见解析【解析】

根据正方形的性质可得AB=AD,∠BAD=90°,再根据∠AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到∠ABE=∠DAF,然后通过“角角边”证得△ABE≌△ADF,则可得AE=DF.【详解】证明∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠DAF+∠BAE=90°,又∵DF⊥AP,BE⊥AP,∴∠AEB=∠AFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAF,在△ABE与△ADF中,,∴△ABE≌△ADF(AAS),∴AE=DF(全等三角形对应边相等).24、(1)证明见解析;(2)BG=5+5.【解析】

(1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;

(2)过点D作DH⊥BC,由锐角三角函数可求DH的长,GH的长,BH的长,即可求BG的长.【详解】(1)∵CD平分∠ACB,∴∠ACD=∠DCG∵EG垂直平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论