版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省Q21联盟2024届八年级数学第二学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.正方形在平面直角坐标系中,其中三个顶点的坐标分别为,,,则第四个顶点的坐标为()A. B. C. D.2.下面哪个点在函数y=2x+4的图象上()A.(2,1) B.(-2,1) C.(2,0) D.(-2,0)3.在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.甲、乙两位射击运动员的10次射击练习成绩的折线统计图如图所示,则下列关于甲、乙这10次射击成绩的说法中正确的是()A.甲的成绩相对稳定,其方差小 B.乙的成绩相对稳定,其方差小C.甲的成绩相对稳定,其方差大 D.乙的成绩相对稳定,其方差大5.如图,平行四边形ABCD的对角线AC、BD相较于点O,EF过点O,且与AD、BC分别相交于E、F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.106.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起销售,若要想销售收入保持不变,则售价大概应定为每千克()A.7元 B.6.8元 C.7.5元 D.8.6元7.在中,,则的长为()A.2 B. C.4 D.4或8.化简:()A.2 B.-2 C.4 D.-49.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,1210.下列说法中错误的是()A.直角三角形斜边上的中线等于斜边的一半B.等底等高三角形的面积相等C.三角形的中位线平行于第三边,并且等于第三边的一半D.如果三角形两条边的长分别是a、b,第三边长为c,则有a2+b2=c2二、填空题(每小题3分,共24分)11.如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为__.12.函数y=-x,在x=10时的函数值是______.13.已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.14.如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有___________个.15.如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°.点D是边OB上一动点,点E在BC上,且∠DAE=60°.有下列结论:①点C的坐标为(12,);②BD=CE;③四边形ADBE的面积为定值;④当D为OB的中点时,△DBE的面积最小.其中正确的有_______.(把你认为正确结论的序号都填上)16.当______时,分式方程会产生增根.17.已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是_____.18.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为_____.三、解答题(共66分)19.(10分)如图,四边形ABCD中,∠A=∠ABC=90∘,AD=3,BC=5,E是边CD的中点,连接BE并延长与AD的延长线相交于点(1)求证:四边形BDFC是平行四边形;(2)若BD=BC,求四边形BDFC的面积.20.(6分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.21.(6分)化简求值:,其中.22.(8分)已知一次函数.(1)若这个函数的图像经过原点,求a的值.(2)若这个函数的图像经过一、三、四象限,求a的取值范围.23.(8分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.24.(8分)如图①,已知△ABC中,∠BAC=90°,AB="AC,"AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=DE+CE.(2)若直线AE绕A点旋转到图②位置时(BD<CE),其余条件不变,问BD与DE、CE的数量关系如何?请给予证明;(3)若直线AE绕A点旋转到图③位置时(BD>CE),其余条件不变,问BD与DE、CE的数量关系如何?请直接写出结果,不需证明.(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.25.(10分)如图,是的中线,,交于点,是的中点,连接.(1)求证:四边形是平行四边形;(2)若四边形的面积为,请直接写出图中所有面积是的三角形.26.(10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.、(1)求△AOB的面积;(2)求不等式kx+b﹣<0的解集(请直接写出答案).
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据已知三个点的横纵坐标特征,可设A(-2,2),B(-2,-2),C(x,y),D(2,2),判断出AB⊥x轴,AD⊥AB,由此可得C点坐标与D点、B点坐标的关系,从而得到C点坐标.【详解】解:设A(-2,2),B(-2,-2),C(x,y),D(2,2),
由于A点和B点的横坐标相同,
∴AB垂直x轴,且AB=1.
因为A点和D点纵坐标相同,
∴AD∥x轴,且AD=1.
∴AD⊥AB,CD⊥AD.
∴C点的横坐标与D点的横坐标相同为2.
C点纵坐标与B点纵坐标相同为-2,
所以C点坐标为(2,-2).
故选:B.【点睛】本题主要考查了正方形的性质、坐标与图形的性质,解决这类问题要熟知两个点的横坐标相同,则两点连线垂直于x轴,纵坐标相同,则平行于x轴(垂直于y轴).2、D【解析】
将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【详解】A、将(2,1)代入解析式y=2x+4得,2×2+4=8≠1,故本选项错误;B、将(-2,1)代入解析式y=2x+4得,2×(-2)+4=0≠1,故本选项错误;C、将(2,0)代入解析式y=2x+1得,2×2+4=8≠0,故本选项错误;D、将(-2,0)代入解析式y=2x+1得,2×(-2)+4=0,故本选项正确;故选D.【点睛】本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.3、C【解析】
解:A、是轴对称图形但不是中心对称图形,故本选项错误;B、既不是轴对称图形也不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、中心对称图形是但不是轴对称图形,故本选项错误;故选C4、B【解析】
结合图形,乙的成绩波动比较小,则波动大的方差就小.【详解】从图看出:乙选手的成绩波动较小,说明它的成绩较稳定的,甲的波动较大,则其方差大.故选:.【点睛】此题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、C【解析】
根据平行四边形的对边相等得:CD=AB=4,AD=BC=5,再根据平行四边形的性质和对顶角相等可以证明△AOE≌△COF,从而求出四边形EFCD的周长即可.【详解】∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AOE=∠COF,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+AD+EF=4+5+1.5×2=12,故选C.【点睛】根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.6、B【解析】
根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【详解】解:售价应定为:(元);故选:B【点睛】本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求6,7,8这三个数的平均数.7、D【解析】
分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.8、A【解析】
根据二次根式的性质解答.【详解】解:.故选:A.【点睛】本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.9、C【解析】试题分析:将原数据按由小到大排列起来,处于最中间的数就是中位数,如果中间有两个数,则中位数就是两个数的平均数;众数是指在这一组数据中出现次数最多的数.考点:众数;中位数10、D【解析】
根据三角性有关的性质可逐一分析选项,即可得到答案.【详解】A项正确,直角三角形斜边上的中线等于斜边的一半;B项正确,等底等高三角形的面积相等;C项正确,三角形的中位线平行于第三边,并且等于第三边的一半;D项错误如果三角形两条边的长分别是a、b,第三边长为c,则不一定是a2+b2=c2,有可能不是直角三角形.【点睛】本题考查了三角形的的性质、三角形的面积及勾股定理相关的知识,学生针对此题需要认真掌握相关定理,即可求解.二、填空题(每小题3分,共24分)11、(-3,1)【解析】
直接利用已知点坐标得出原点的位置进而得出答案.【详解】解:如图所示:“兵”的坐标为:(-3,1).
故答案为(-3,1).【点睛】本题考查坐标确定位置,正确得出原点位置是解题关键.12、-1【解析】
将函数的自变量的值代入函数解析式计算即可得解.【详解】解:当时,y=-=-=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征,准确计算即可,比较简单.13、24,26【解析】
将54-1利用分解因式的知识进行分解,再结合题目54-1能被20至30之间的两个整数整除即可得出答案.【详解】54−1=(5+1)(5−1)∵54−1能被20至30之间的两个整数整除,∴可得:5+1=26,5−1=24.故答案为:24,26【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则14、1【解析】
根据题意画出图形,根据勾股定理的逆定理进行判断即可.【详解】如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C1两点,综上所述,共有1个点,故答案为1.【点睛】本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.15、①②③【解析】
①过点C作CF⊥OB,垂足为点F,求出BF=4,CF=,即可求出点C坐标;②连结AB,证明△ADB≌△AEC,则BD=CE;③由S△ADB=S△AEC,可得S△ABC=S△四边形ADBE=×8×=;④可证△ADE为等边三角形,当D为OB的中点时,AD⊥OB,此时AD最小,则S△ADE最小,由③知S四边形ADBE为定值,可得S△DBE最大.【详解】解:①过点C作CF⊥OB,垂足为点F,∵四边形AOBC为菱形,
∴OB=BC=8,∠AOB=∠CBF=60°,
∴BF=4,CF=,∴OF=8+4=12,∴点C的坐标为(12,),故①正确;②连结AB,
∵BC=AC=AO=OB,∠AOB=∠ACB=60°,
∴△ABC是等边三角形,△AOB是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAE=60°,
∴∠DAB=∠EAC,
∵∠ABD=∠ACE=60°,
∴△ADB≌△AEC(ASA),
∴BD=CE,故②正确;③∵△ADB≌△AEC.
∴S△ADB=S△AEC,
∴S△ABC=S△四边形ADBE=×8×=,故③正确;④∵△ADB≌△AEC,
∴AD=AE,∵∠DAE=60°,
∴△ADE为等边三角形,
当D为OB的中点时,AD⊥OB,
此时AD最小,则S△ADE最小,
由③知S四边形ADBE为定值,可得S△DBE最大.
故④不正确;故答案为:①②③.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质等,正确作出辅助线是解题的关键.16、1【解析】
解分式方程,根据增根的含义:使最简公分母为0的根叫做分式方程的增根,即可求得.【详解】解:去分母得,解得,而此方程的最简公分母为,令故增根为.即,解得.故答案为1.【点睛】本题考查解分式方程,难度不大,是中考的常考点,熟练掌握增根的含义是顺利解题的关键.17、.【解析】
已知数据0,1,2,2,x,3的平均数是2,由平均数的公式计算可得(0+1+2+2+x+3)÷6=2,解得x=4,再根据方差的公式可得,这组数据的方差=[(2﹣0)2+(2﹣1)2+(2﹣2)2+(2﹣2)2+(2﹣4)2+(2﹣3)2]=.18、(3,2)【解析】对称点的纵坐标与点P的纵坐标相等,为2,对称点与直线x=1的距离和P与直线x=1的距离相等,所以对称点的横坐标为3,所以对称点的坐标为(3,2).点睛:掌握轴对称图形的性质.三、解答题(共66分)19、(1)见解析;(2)四边形BDFC的面积=20.【解析】
(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;
(2)利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得.【详解】解:(1)证明:∵∠A=∠ABC=90∴BC//AD,∴∠CBE=∠DFE,又∵E是边CD的中点,∴CE=DE,在ΔBEC与ΔFED中,∠CBE=∠DFE∠BEC=∠FEDCE=DE∴ΔBEC≅ΔFED,∴BE=FE∴四边形BDFC是平行四边形;(2)∵BD=BC=5,∴AB=B∴四边形BDFC的面积=BC⋅AB=5×4=20.【点睛】本题考查了平行四边形的判定与性质,平行线的判定、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1)见解析;(2)【解析】分析:(1)证明四边形OCED是矩形即可;(2)在Rt△ACE中,求出AC,CE的长,则可用勾股定理求AE.详解:(1)证明:∵四边形ABCD是菱形,DE=AC,∴AC⊥BD,DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,四边形OCED是平行四边形,∴四边形OCED是矩形,∴OE=CD.(2)证明:∵菱形ABCD的边长为6,∴AB=BC=CD=AD=6,BD⊥AC,AO=CO=AC.∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=6.∵△AOD中BD⊥AC,AD=6,AO=3,∴OD=.∵四边形OCED是矩形,∴CE=OD=.∵在Rt△ACE中,AC=6,CE=,∴AE=.点睛:本题考查了菱形的性质,矩形的判定和性质及勾股定理,菱形中出现了60°角要求线段的长度时,一般要考虑两点:①图形中会有等边三角形,②以60°角的某一边为直角边的直角三角形,再利用勾股定理求解.21、【解析】
直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】解:当时:原式.【点睛】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.22、(1)2;(2)【解析】
(1)y=kx+b经过原点则b=0,据此求解;(2)y=kx+b的图象经过一、三、四象限,k>0,b<0,据此列出不等式组求解即可.【详解】解:(1)由题意得,∴.(2)由题意得解得:∴a的取值范围是:【点睛】考查了一次函数的性质,了解一次函数的性质是解答本题的关键,难度不大.23、这样定价不合理,理由见解析【解析】
根据加权平均数的概念即可解题.【详解】解:这样定价不合理.(元/).答:该什锦糖果合理的单价为18.7元/.【点睛】本题考查了加权平均数的实际计算,属于简单题,熟悉加权平均数的概念是解题关键.24、(1)、证明过程见解析;(2)、BD=DE–CE;证明过程见解析;(3)、BD=DE–CE;(4)、当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,BD=DE+CE.【解析】
(1)、根据垂直得出∠ADB=∠CEA=90°,结合∠BAC=90°得出∠ABD=∠CAE,从而证明出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出答案;(2)、根据第一题同样的方法得出△ABD和△ACE全等,根据全等得出BD=AE,AD=EC,然后得出结论;(3)、根据同样的方法得出结论;(4)、根据前面的结论得出答案.【详解】(1)∵BD⊥AE,CE⊥AE∴∠ADB=∠CEA=90°∴∠ABD+∠BAD=90°又∵∠BAC=90°∴∠EAC+∠BAD=90°∴∠ABD=∠CAE在△ABD与△ACE∴△ABD≌△ACE∴BD=AE,AD=EC∴BD=DE+CE(2)、∵BD⊥AE,CE⊥AE∴∠ADB=∠CEA=90°∴∠ABD+∠BAD=90°又∵∠BAC=90°∴∠EAC+∠BAD=90°∴∠ABD=∠CAE在△ABD与△ACE∴△ABD≌△ACE∴BD=AE,AD=EC∴BD=DE–CE(3)、同理:BD=DE–CE(4)、归纳:由(1)(2)(3)可知:当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,∴BD=DE+CE考点:三角形全等的证明与性质25、(1)见解析;(2),,,【解析】
(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度不动产登记信息共享与安全保障合同3篇
- 2025年度新型住宅水电费分时计费合同4篇
- 2025年度生态厕所建设与资源化利用合同4篇
- 2024版货车租赁吊车合同3篇
- 2025年度生物制药研发成果转化保密合同4篇
- 2025年度智能节能窗户系统研发、安装与运营合同3篇
- 2025年度LED广告车租赁及智能控制系统集成服务合同3篇
- 2025宾馆一次性餐饮用品采购及库存管理合同3篇
- 2024版货物出口运输服务协议书
- 2025年度山地旅游项目土石方运输与景观开发合同汇编3篇
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)历史试卷(含答案)
- 露天矿山课件
- 经济效益证明(模板)
- 银行卡冻结怎么写申请书
- 果树蔬菜病害:第一章 蔬菜害虫
- 借条借款合同带担保人
- 人工地震动生成程序
- 创意综艺风脱口秀活动策划PPT模板
- SSB变桨系统的基础知识
- 大五人格量表(revised)--计分及解释
- CFA考试(LevelⅠ)历年真题详解2015LevelⅠMockExamAfternoonSession
评论
0/150
提交评论