版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省德州市宁津县八年级下册数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将直线向下平移2个单位,得到直线()A. B. C. D.2.如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为()A.x≥3
B.x≤3
C.x≤2
D.x≥23.如图,有一个矩形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF的长为()A.5 B.6 C.7 D.84.如果,在矩形中,矩形通过平移变换得到矩形,点都在矩形的边上,若,且四边形和都是正方形,则图中阴影部分的面积为()A. B. C. D.5.下列多项式中,可以使用平方差公式进行因式分解的是()A.x+1 B.﹣x+1 C.x+x D.x+2x+16.如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是()A.4米 B.4.5米 C.5米 D.5.5米7.下列多项式中,能用公式法分解因式的是()A. B. C. D.8.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B. C.6 D.9.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=6,BC=8,则CD等于(
)A.1 B.2 C.3 D.4.810.用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n个正六边形,则m,n满足的关系式是()A.2m+3n=12 B.m+n=8 C.2m+n=6 D.m+2n=611.将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180° C.减少360° D.增加360°12.如图,在平行四边形ABCD中,E是边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的度数为A. B. C. D.二、填空题(每题4分,共24分)13.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.14.一个多边形的各内角都等于,则这个多边形的边数为______.15.在中,,,点在上,.若点是边上异于点的另一个点,且,则的值为______.16.已知关于的分式方程的解为负数,则的取值范围是.17.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)18.若-,则的取值范围是__________.三、解答题(共78分)19.(8分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.(1)求线段AB的长度(2)求直线BC的解析式;(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.20.(8分)如图,直线与反比例函数的图象交于、两点,与轴交于点,已知点的坐标为.(1)求反比例函数的解析式;(2)若点是反比例函数图象上一点,过点作轴于点,延长交直线于点,求的面积.21.(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.22.(10分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.23.(10分)如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点即停止,点、的速度都是每秒1个单位,连接、、.设点、运动的时间为秒(1)当为何值时,四边形是矩形;(2)当时,判断四边形的形状,并说明理由;24.(10分)计算:(1)(2).25.(12分)如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.⑴求证:四边形AEGD为菱形;⑵若,AD=2,求DF的长.26.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据一次函数图象的平移规律即可得.【详解】由一次函数图象的平移规律得:向下平移得到的直线为即故选:A.【点睛】本题考查了一次函数图象的平移规律,掌握图象的平移规律是解题关键.2、A【解析】
将点A(m,3)代入y=−x+4得,−m+4=3,解得,m=2,所以点A的坐标为(2,3),由图可知,不等式kx⩾−x+4的解集为x⩾2.故选D【点睛】本题考查了一次函数和不等式(组)的关系以及数形结合思想的应用.解决此类问题的关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.3、B【解析】
根据矩形的性质得到CD=AB=8,根据勾股定理求出CF,根据勾股定理列方程计算即可.【详解】∵四边形ABCD是矩形,∴CD=AB=8,∴DE=CD﹣CE=5,由折叠的性质可知,EF=DE=5,AF=CD=BC,在Rt△ECF中,CF==4,由勾股定理得,AF2=AB2+BF2,即(BF+4)2=82+BF2,解得,BF=6,故选:B.【点睛】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4、A【解析】
设两个正方形的边长为x,表示出MK、JM,然后根据三个面积的关系列出方程并求出x,再求出S3.【详解】设两个正方形的边长为x,则MK=BF-EJ=4-x,JM=BE-KF=3-x,∵4S3=S1+S2,∴4(4-x)(3-x)=2x2,整理得,x2-14x+24=0,解得x1=2,x2=12(舍去),∴S1=S2=22=4,∴AB=BE+x=3+2=5,BC=BF+x=4+2=6,∴S矩形ABCD=AB•BC=30,∵4S3=S1+S2,∴S3=(S1+S2)=×(4+4)=2.故选A.【点睛】】本题考查了矩形的性质,平移的性质,平移前后的两个图形能够完全重合,关键在于表示出MK、JM并列出方程.5、B【解析】
根据提公因式法、平方差公式、完全平方公式进行因式分解,判断即可.【详解】A、x2+1,不能进行因式分解;B、﹣x2+1=1﹣x2=(1+x)(1﹣x),可以使用平方差公式进行因式分解;C、x2+x=x(x+1),可以使用提公因式法进行因式分解;D、x2+2x+1=(x+1)2,可以使用完全平方公式进行因式分解;故选:B.【点睛】此题考查因式分解,掌握提公因式法、平方差公式、完全平方公式进行因式分解的一般步骤是解题的关键.6、D【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D∴△ADEF∽△DCB∴∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。7、D【解析】
利用平方差公式及完全平方公式的结构特征判断即可.【详解】解:=(n+m)(n−m),故选D.【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.8、D【解析】
利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】绕点顺时针旋转到的位置.四边形的面积等于正方形的面积等于20,,,中,故选:.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9、D【解析】试题分析:根据勾股定理可求得AB=10,然后根据三角形的面积可得,解得CD=4.8.故选:D10、D【解析】
正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为310°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【详解】正多边形的平面镶嵌,每一个顶点处的几个角之和应为310度,而正三角形和正六边形内角分别为10°、120°,根据题意可知10°×m+120°×n=310°,化简得到m+2n=1.故选D.【点睛】本题考查了平面镶嵌的条件,熟练掌握在每一个顶点处的几个角的和为310度是解题的关键.11、D【解析】
利用多边形的内角和公式即可求出答案.【详解】解:n边形的内角和是(n-2)•180°,n+2边形的内角和是n•180°,因而(n+2)边形的内角和比n边形的内角和大n•180°-(n-2)•180=360°.故选:D.【点睛】本题考查多边形的内角和公式,熟记内角和公式是解题的关键.12、B【解析】
由平行四边形的性质得出,由折叠的性质得:,,由三角形的外角性质求出,与三角形内角和定理求出,即可得出的大小.【详解】四边形ABCD是平行四边形,,由折叠的性质得:,,,,,故选B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理,熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED'是解决问题的关键.二、填空题(每题4分,共24分)13、【解析】
试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-114、6【解析】
由题意,这个多边形的各内角都等于,则其每个外角都是,再由多边形外角和是求出即可.【详解】解:∵这个多边形的各内角都等于,∴其每个外角都是,∴多边形的边数为,故答案为6.【点睛】本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是是解题的关键.15、24或21或【解析】
情况1:连接EP交AC于点H,依据先证明是菱形,再根据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据EP=2EH=2sin10°•EC求解即可.情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.此时,=24
情况2:如图2:过点P′作P′F⊥BC.通过解直角三角形可以解得FC,EF,再在Rt△P′EF中,利用勾股定理可以求得.【详解】解:情况1:如图所示:连接EP交AC于点H.
∵在中,∴是菱形∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴EP=2EH=2sin10°•EC=2××2=1.∴=21
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.∴=24
情况2:如图2:过点P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=20°.
∴FC=×2=2,P′F=,EF=2-2.∴=,
故答案为:24或21或.【点睛】本题主要考查的是菱形的性质,全等三角形的判定和性质,以及解直角三角形和勾股定理得结合,是综合性题目,难度较大.16、且.【解析】试题分析:分式方程去分母得:.∵分式方程解为负数,∴.由得和∴的取值范围是且.考点:1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.17、(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).18、【解析】
利用二次根式的性质()及绝对值的性质化简(),即可确定出x的范围.【详解】解:∵,∴.∴,即.故答案为:.【点睛】本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键.三、解答题(共78分)19、(1);(2);(3)P点的坐标是.【解析】
(1)先确定出点A,B坐标,利用勾股定理计算即可;(2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.(3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.【详解】解:(1)∵直线交坐标轴于A、B两点.∴令,,∴B点的坐标是,,令,,∴A点的坐标是,,根据勾股定理得:.(2)如图,作CE⊥x轴于E,作CF⊥y轴于F,∴四边形OECF是矩形.∵是等腰直角三角形,,,,,,,.∴四边形OECF是正方形,,,,.∴C点坐标设直线BC的解析式为:,∴将、代入得:,解得:,.∴直线BC的解析式为:.(3)延长AB交DP于M,由旋转知,BD=AB,∴∠BAD=∠BDA,∵AD⊥DP,∴∠ADP=90°,∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,∴∠AMD=∠BDM,∴BD=BM,∴BM=AB,∴点B是AM的中点,∵A(4,0),B(0,2),∴M(−4,4),∴直线DP的解析式为y=−x,∵直线DO交直线y=x+3于P点,将直线与联立得:解得:∴P点的坐标是.【点睛】此题是一次函数综合题,主要考查了待定系数法求函数解析式,一次函数的图像和性质,全等三角形的判定和性质,等腰三角形的判定和性质等,解(2)的关键是求出点C的坐标,解(3)的关键是证明点B是AM的中点,求出直线DP的解析式.20、(1);(2).【解析】
(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.【详解】(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y.(2)将点P的纵坐标y=﹣1代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,∴EF=3,CE=OE+OC=2+1=3,∴S△CEFCE×EF.【点睛】本题考查了一次函数与反比例函数的交点问题,解答本题的关键是确定点A的坐标,要求同学们能结合图象及直角坐标系,将点的坐标转化为线段的长度.21、详见解析【解析】
根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.【详解】,∴AC+CF=EF+CF,又,,,,,,∴四边形是平行四边形.【点睛】本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.22、(1)证明见解析(2)3【解析】试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.试题解析:(1)证明:∵AB="2CD",E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE,BC=DE,∴△EDM∽△FBM;(2)∵BC=DE,F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.考点:1.梯形的性质;2.平行四边形的判定与性质;3.相似三角形的判定与性质.23、(1);(2)当时,四边形为菱形,理由见解析.【解析】
(1)由矩形性质得出,,由已知可得,,,当时,四边形为矩形,得出方程,解方程即可;(2)时,,,得出,,,,四边形为平行四边形,在中,与勾股定理求出,得出,即可得出结论.【详解】解:(1)在矩形中,,,,,由已知可得,,,在矩形中,,,当时,四边形为矩形,,解得:,当时,四边形为矩形;(2)四边形为菱形;理由如下:,,,,,,,四边形为平行四边形,在中,,,平行四边形为菱形,当时,四边形为菱形;【点睛】本题考查了矩形的判定与性质、菱形的判定、勾股定理、平行四边形的判定等知识;熟练掌握判定与性质是解题的关键.24、(1);(1)【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;(1)利用平方差和完全平方公式计算.【详解】解:(1)原式=3﹣+1=;(1)原式=()1+1+1﹣[()1﹣1]=5+1+1﹣5+1=1+1.故答案为:(1);(1)1+1.【点睛】本题考查了二次根式的混合运算.25、(1)证明见解析;(2)4.【解析】
(1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;
(2)连接AG交DF于H,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论