版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省重点中学2024年数学八年级下册期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A. B. C. D.2.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A.1 B.2 C.3 D.3.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30° B.35° C.40° D.45°4.如图,点为正方形内一点,,,连结,那么的度数是()A. B. C. D.5.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2
B.b=1
C.a≠2且b=1
D.a,b可取任意实数6.若代数式x+3有意义,则实数x的取值范围是()A.x≠-3 B.x>-3 C.x≥-3 D.任意实数7.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q8.下列根式是最简二次根式的是()A.2 B.23 C.9 D.9.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交边于点,若,,则的面积是()A.15 B.30 C.45 D.6010.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,如果一次函数y=kx+b与反比例函数y=6xx>0的图象交于Am,6,Bn,312.如图,在平面直角坐标系中,已知直线分别交反比例函数和在第一象限的图象于点过点作轴于点交的图象于点连结.若是等腰三角形,则的值是________________.13.如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm)随时间x(s)变化的关系图象,则a的值是__14.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.15.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180∘到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A'的坐标为______16.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.17.两个相似三角形的周长分别为8和6,若一个三角形的面积为36,则另一个三角形的面积为________.18.若分式的值为零,则x的值为_____.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AB=1,对角线AC、BD相交于点O,过点O作EF⊥AC分别交射线AD与射线CB于点E和点F,联结CE、AF.(1)求证:四边形AFCE是菱形;(2)当点E、F分别在边AD和BC上时,如果设AD=x,菱形AFCE的面积是y,求y关于x的函数关系式,并写出x的取值范围;(3)如果△ODE是等腰三角形,求AD的长度.20.(6分)已知,一次函数的图象与x轴、y轴分别交于点A和B.求A,B两点的坐标,并在如图的坐标系中画出函数的图象;若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.21.(6分)甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:(1)A、B两地的距离是__________km;(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;(3)请直接写出甲、乙两车何时相聚15km。22.(8分)某水果店经销进价分别为元/千克、元/千克的甲、乙两种水果,下表是近两天的销售情况:(进价、售价均保持不变,利润=售价-进价)时间甲水果销量乙水果销量销售收入周五千克千克元周六千克千克元(1)求甲、乙两种水果的销售单价;(2)若水果店准备用不多于元的资金再购进两种水果共千克,求最多能够进甲水果多少千克?(3)在(2)的条件下,水果店销售完这千克水果能否实现利润为元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.(8分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(m2/个)
A型
3
20
48
B型
2
3
6
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.24.(8分)如图,中,且是的中点(1)求证:四边形是平行四边形。(2)求证:四边形是菱形。(3)如果时,求四边形ADBE的面积(4)当度时,四边形是正方形(不证明)25.(10分)某村深入贯彻落实新时代中国特色社会主义思想,认真践行“绿水青山就是金山银山”理念在外打工的王大叔返回江南创业,承包了甲乙两座荒山,各栽100棵小枣树,发现成活率均为97%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的小枣,每棵的产量如折线统计图所示.(1)直接写出甲山4棵小枣树产量的中位数;(2)分别计算甲乙两座小枣样本的平均数,并判断那座山的样本的产量高;(3)用样本平均数估计甲乙两座山小枣的产量总和.26.(10分)已知二次函数y=x2-2x-3.(1)完成下表,并在平面直角坐标系中画出这个函数图像.x…
…y…
…(2)结合图像回答:①当时,有随着的增大而
.②不等式的解集是
.
参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.详解:A.被开方数含能开得尽方的因数或因式,故不符合题意;B.被开方数含分母,故不符合题意;C.被开方数含分母,故不符合题意;D.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故符合题意;故选D.点睛:此题考查了最简二次根式:被开方数不含分母;被开方数不含能开得尽方的因数或因式,满足这两个条件的二次根式才是最简二次根式.2、C【解析】
根据平移的性质即可解答.【详解】如图连接,根据平行线的性质得到∠1=∠2,如图,平移的距离的长度故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.3、B【解析】
由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.【详解】解:由旋转可知,∠BAD=110°,AB=AD∴∠B=∠ADB,∠B=(180°-110°)2=35°,故选B.【点睛】本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.4、C【解析】
由正方形的性质得到AD=CD,根据等腰三角形的性质得到∠DAE=∠AED=70°,求得∠ADE=180°-70°-70°=40°,得到∠EDC=50°,根据等腰三角形的性质即可得到结论.【详解】解:,,,四边形是正方形,,,,,,,故选:.【点睛】本题考查了正方形的性质,等腰三角形的性质,熟练掌握正方形的性质是解题的关键.5、C【解析】解:根据正比例函数的定义得:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.点睛:本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解答此题的关键.6、C【解析】
根据二次根式有意义的条件即可求出答案.【详解】∵代数式有意义∴x+3≥0∴x≥-3.故选C.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.7、C【解析】
试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.【详解】解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q在以点O为圆心的圆上,OP与ON的大小关系不能确定,∴点P不一定在圆上.故选C.【点睛】考点:点与圆的位置关系;线段垂直平分线的性质.8、A【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、3是最简二次根式,符合题意;B、23=6C、9=3,不符合题意;D、12=23,不符合题意;故选A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9、B【解析】
作DE⊥AB于E,根据角平分线的性质得到DE=DC=4,根据三角形的面积公式计算即可.【详解】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=AB×DE=×15×4=30,故选:B.【点睛】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10、C【解析】
根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.二、填空题(每小题3分,共24分)11、1<x<2【解析】
先求出m,n的值,再观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可.【详解】∵点A(m,6)、B(n,3)在函数y=6∴m=1,n=2,∴A点坐标是(1,6),B点坐标是(2,3),观察图象可知,x的取值范围是1<x<2.故答案为:1<x<2.【点睛】本题考查一次函数与反比例函数的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题,属于中考常考题型.12、或【解析】
根据题意,先求出点A、B的坐标,然后得到点C的坐标,由等腰三角形的性质,进行分类讨论,即可求出k的值.【详解】解:根据题意,有则,解得:同理可得:为等腰三角形,当时,即整理得解得或(舍去);当时,即整理得,解得或(舍).故答案为:或.【点睛】本题利用反比例函数与一次函数交点特征将点坐标用含的式子表示出来,对等腰三角形的腰进行分类讨论.属于常考题型13、【解析】
过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,BD=,在Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm.∴AD=a,∴DE·AD=a,∴DE=2.当点F从D到B时,用s,∴BD=.Rt△DBE中,BE=.∵ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a=2+(a-1),解得a=.【点睛】此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;14、2.40,2.1.【解析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它们的中位数为2.40,众数为2.1.故答案为2.40,2.1.点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.15、(3,-1)【解析】根据图示可知A点坐标为(-3,-1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,-1),16、x>-2【解析】试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.考点:一次函数与一元一次不等式.17、64或【解析】
根据相似三角形周长的比等于相似比,面积的比等于相似比的平方求出面积比,根据题意计算即可.【详解】解:∵两个相似三角形的周长分别为8和6,∴两个相似三角形的周长之比为4:3,∴两个相似三角形的相似比是4:3,∴两个相似三角形的面积比是16:9,又一个三角形的面积为36,设另一个的面积为S,则16:9=S:36或16:9=36:S,∴S=64或,故答案为:64或.【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18、1【解析】
由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【详解】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.故答案为:1.【点睛】本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.三、解答题(共66分)19、(1)见解析;(2);(3)AD的值为或.【解析】
(1)由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.(2)由cos∠DAC=,求出AE即可解决问题;(3)分两种情形分别讨论求解即可.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.(2)由题意可知:,,∵,∴,∴,∵AE≤AD,∴,∴x2≥1,∵x>0,∴x≥1.即(x≥1).(3)①如图2中,当点E在线段AD上时,ED=EO,则Rt△CED≌Rt△CEO,∴CD=CO=AO=1,在Rt△ADC中,AD=.如图3中,当的E在线段AD的延长线上时,DE=DO,∵DE=DO=OC,EC=CE,∴Rt△ECD≌Rt△CEO,∴CD=EO,∵∠DAC=∠EAO,∠ADC=∠AOE=90°,∴△ADC≌△AOE,∴AE=AC,∵EO垂直平分线段AC,∴EA=EC,∴EA=EC=AC,∴△ACE是等边三角形,∴AD=CD•tan30°=,综上所述,满足条件的AD的值为或.【点睛】本题考查四边形综合题、矩形的性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.20、(1)A,B,画图见解析;(2),.【解析】
(1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.【详解】解:将代入,可得;
将,代入,可得;
点A的坐标为,点B的坐标为,
如图所示,直线AB即为所求;
由点A的坐标为,点B的坐标为,可得,,中,,四边形ABCD是菱形,,,,.【点睛】本题考核知识点:一次函数与菱形.解题关键点:熟记菱形的判定与性质.21、(1)180;(2);(3)甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km【解析】
(1)根据图象解答即可;(2)根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;(3)根据题意,利用分类讨论的数学思想可以求得x的值.【详解】解:(1)观察图象可得:A、B两地的距离是180km;(2)由题意得,甲车的平均速度为:180÷(3-1)=90所以当x=1时,y=90当x=2时,y=90当2≤x≤3时,设(k≠0)点(2,90),(3,180)在直线上因此有解得:∴∴甲车休息后离A地的距离为y(km)与x(h)之间的函数关系为:(3)设乙车行驶过程中y与x之间的函数关系式是y=ax,
180=3a,得a=60,
∴乙车行驶过程中y与x之间的函数关系式是y=60x,∴60x=90,得x=1.5,即两车1.5小时相遇,当0≤x≤1.5时,甲车行驶过程中y与x之间的函数关系式是y=90x,90=x,
∴90x-60x=15,得x=,
90-60x=15时,x=1.25,当1.5≤x≤3时,甲车行驶过程中y与x之间的函数关系式是y=9x-90,
90=x,
∴60x-90=1.5,得x=1.75;60x-(90x-90)=15,得x=2.5由上可得,甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km。【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.22、(1)甲、乙两种水果的销售单价分别为元、元;(2)最多购进甲水果千克时,采购资金不多于元;(3)在(2)的条件下水果店不能实现利润元的目标.【解析】
(1)设甲、乙两种水果的销售单价分别为元、元,根据题意找到等量关系进行列二元一次方程组进行求解;(2)设购进甲水果为千克,乙水果千克时采购资金不多于元,根据题意列出不等式即可求解;(3)根据题意找到等量关系列出方程即可求解.【详解】解:(1)设甲、乙两种水果的销售单价分别为元、元,依题意得:解得:所以甲、乙两种水果的销售单价分别为元、元(2)设购进甲水果为千克,乙水果千克时采购资金不多于元;根据题意得:.解得:所以最多购进甲水果千克时,采购资金不多于元(3)依题意得:解得:因为,所以在(2)的条件下水果店不能实现利润元的目标.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系、不等关系进行列式求解.23、(1)y=x+40;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能【解析】试题分析:(1)根据总价=单价×数量,即可得到结果;(2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;(3)先根据一次函数的性质求得最少费用,与村民每户集资700元与政府补助共计的费用比较即可判断.(1)y=3x+2(20-x)=x+40;(2)由题意得20x+3(20-x)≥264①解①得x≥12解②得x≤14∴不等式的解为12≤x≤14∵x是正整数∴x的取值为12,13,14即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)∵y=x+40中,y随x的增加而增加,要使费用最少,则x=12∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计:700×264+340000=524800>520000∴每户集资700元能满足所需要费用最少的修建方案.考点:本题考查的是一元一次不等式组的应用点评:解答本题的关键是读懂题意,找准不等关系列出不等式组,并注意未知数的取值是正整数.24、(1)见解析;(2)见解析;(3)24;(4)45.【解析】
(1)推出CE=BD,CE∥BD,可证四边形是平行四边形;(2)求出BDF=AE,BD∥AE,得出平行四边形ADBE,根据DE∥BC,∠ABC=90°推出DE⊥AB,根据菱形的判定推出即可;(3)由四边形BDEC是平行四边形,可得DE=BC=6,然后根据菱形的面积公式求解即可;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子地图行业研究报告
- 2024现行劳动合同法的缺陷与应对办法
- 电子发声器课程设计
- 电子光学 课程设计
- 2024新版个人借款合同范本精装版
- 电器账号运营策略研究报告
- 电商运营模式课程设计
- 电商学苑课程设计
- 《园林艺术漫谈》课件
- 电压逆变电路课程设计
- (新人教版)高中英语必修第三册全册分单元复习课件(共5个单元)
- 融合新闻学智慧树知到期末考试答案2024年
- 《劳模王进喜》课件-高教版中职语文职业模块
- (2024年)部队战备教育教案x
- 人工成本的预算方案
- 三年级上册美术教案-2.4 巨人和小矮人历险记丨岭南版
- 华为智慧供应链ISC 战略规划项目方案
- 环保型低能耗混凝土外加剂研发与应用
- 2024年华电金沙江上游水电开发有限公司招聘笔试参考题库含答案解析
- 浙江省计算机二级MS考试题库(浓缩400题)
- 计算机科学与技术大学生生涯发展展示
评论
0/150
提交评论