浙江省温州市龙港地区2024年八年级下册数学期末学业水平测试模拟试题含解析_第1页
浙江省温州市龙港地区2024年八年级下册数学期末学业水平测试模拟试题含解析_第2页
浙江省温州市龙港地区2024年八年级下册数学期末学业水平测试模拟试题含解析_第3页
浙江省温州市龙港地区2024年八年级下册数学期末学业水平测试模拟试题含解析_第4页
浙江省温州市龙港地区2024年八年级下册数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市龙港地区2024年八年级下册数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中是中心对称图形,但不是轴对称图形的是(

).A.正方形 B.菱形 C.矩形 D.平行四边形2.如图,在等边△ABC中,点P从A点出发,沿着A→B→C的路线运动,△ACP的面积为S,运动时间为t,则S与t的图像是()A. B.C. D.3.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣14.木匠有32米的木材,想要在花圃周围做边界,以下四种设计方案中,设计不合理的是()A. B. C. D.5.下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为x轴、y轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为1,2,表示水宁阁的点的坐标为-4,1,那么下列各场馆的坐标表示正确的是()A.中国馆的坐标为-1,-2B.国际馆的坐标为1,-3C.生活体验馆的坐标为4,7D.植物馆的坐标为-7,46.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个7.已知ABCD中,∠A+∠C=200°,则∠B的度数是()A.100° B.160° C.80° D.60°8.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是55,则图2中a的值为()A.30 B.5 C.7 D.359.如图,在平面直角坐标系中,点A是反函数图像上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若的面积为3,则k的值为()A.3 B.-3C.6 D.-610.如图,分别是的边上的点,将四边形沿翻折,得到交于点则的周长为()A. B. C. D.11.下列结论中正确的有()①若一个三角形中最大的角是80°,则这个三角形是锐角三角形②三角形的角平分线、中线和高都在三角形内部③一个三角形最少有一个角不小于60°④一个等腰三角形一定是钝角三角形A.1个 B.2个 C.3个 D.4个12.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直二、填空题(每题4分,共24分)13.关于x的一次函数,当_________时,它的图象过原点.14.苏州市2017年6月份最后六大的最高气温分别为31,34,36,27,25,33(单位:℃).这组数据的极差是_____.15.一组数据5,7,2,5,6的中位数是_____.16.如图,在□ABCD中,E为BC中点,DE、AC交于F点,则=_______.17.若不等式组恰有两个整数解,则m的取值范围是__________.18.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.三、解答题(共78分)19.(8分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?20.(8分)已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.(1)求证:四边形CDEF是平行四边形;(2)填空:①当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是矩形;②当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是菱形.21.(8分)有这样一个问题:探究函数的图象与性质,小东根据学习函数的经验,对函数的图象与性质进行了探究,下面是小东的探究过程,请补充完整:(1)下表是与的几组对应值,则.…………(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)当时,随的增大而;当时,的最小值为.22.(10分)解答题.某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、1.(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?(2)将30名学生捐款额分成下面5组,请你完成频数统计表:(3)根据上表,作出频数分布直方图.23.(10分)如图,四边形ABCD是以坐标原点O为对称中心的矩形,,该矩形的边与坐标轴分别交于点E、F、G、H.直接写出点C和点D的坐标;求直线CD的解析式;判断点在矩形ABCD的内部还是外部,并说明理由.24.(10分)(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形,,,则拼得的四边形的周长是_____.(操作发现)将图①中的沿着射线方向平移,连结、、、,如图②.当的平移距离是的长度时,求四边形的周长.(操作探究)将图②中的继续沿着射线方向平移,其它条件不变,当四边形是菱形时,将四边形沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.25.(12分)(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则º;(2)小丽手中有一张矩形纸片,,.她准备按如下两种方式进行折叠:①如图2,点在这张矩形纸片的边上,将纸片折叠,使点落在边上的点处,折痕为,若,求的长;②如图3,点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点,分别落在,处,若,求的长.26.这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a、b,斜边为c)可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.正方形、菱形、矩形均既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,故选D.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2、C【解析】当点A开始沿AB边运动到点B时,△ACP的面积为S逐渐变大;当点A沿BC边运动到点C时,△ACP的面积为S逐渐变小.,∴由到与由到用的时间一样.故选C.3、D【解析】因为函数与的图象相交于点A(m,2),把点A代入可求出,所以点A(-1,2),然后把点A代入解得,不等式,可化为,解不等式可得:,故选D.4、A【解析】

根据平移的性质以及矩形的周长公式分别求出各图形的周长即可得解.【详解】A、∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32m,∴周长一定大于32m;B、周长=2(10+6)=32m;C、周长=2(10+6)=32m;D、周长=2(10+6)=32m;故选:A.【点睛】本题考查了矩形的周长,平行四边形的周长公式,平移的性质,根据平移的性质第三个图形、第四个图形的周长相当于矩形的周长是解题的关键.5、A【解析】

根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【详解】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(-1,-2),故本选项正确;B、国际馆的坐标为(3,-1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(-7,-4),故本选项错误.故选:A.【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.6、B【解析】

根据中心对称的概念对各图形分析判断即可得解.【详解】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】试题分析:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC.∵∠A+∠C=200°,∴∠A=100°.∴∠B=180°﹣∠A=80°.故选C.8、A【解析】

根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是15,得出BC的值,再利用勾股定理即可解答.【详解】由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为1.所以12BC×1=15,解得BC=25所以AB=52故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.9、D【解析】

根据三角形ABO的面积为3,得到|k|=6,即可得到结论.【详解】解:∵三角形AOB的面积为3,

∴,

∴|k|=6,

∵k<0,

∴k=-6,

故选:D.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.10、C【解析】

根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∴EG=FG=EF=4,∴△GEF的周长=4×3=12,故选:C.【点睛】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定与性质等知识;熟练掌握翻折变换的性质是解决问题的关键.11、B【解析】

根据锐角三角形的定义判断①;根据三角形的角平分线、中线、高的定义及性质判断②;根据三角形的内角和定理判断③;根据等腰三角形的性质判断④.【详解】解:①若一个三角形中最大的角是80°,则这个三角形是锐角三角形,根据锐角三角形的定义可知,本说法正确;②三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故此说法错误;③如果三角形中每一个内角都小于60°,那么三个角三个角的和小于180°,与三角形的内角和定理相矛盾,故此说法正确;④一个等腰三角形,它的顶角既可以是钝角,也可以是直角或锐角,所以等腰三角形不一定是钝角三角形,此说法错误;正确的说法是①④,共2个故选:B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,等腰三角形的性质,锐角三角形及钝角三角形,熟记定理与性质是解题的关键.12、D【解析】试题分析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.考点:菱形的性质;平行四边形的性质.二、填空题(每题4分,共24分)13、【解析】

由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.【详解】解:函数图像过原点该函数为正比例函数故答案为:【点睛】本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.14、32【解析】

根据极差的定义进行求解即可得答案.【详解】这组数据的最大值是36,最小值是25,这组数据的极差是:36﹣25=1(℃),故答案为1.【点睛】本题考查了极差,掌握求极差的方法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值.15、1【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:将数据从小到大排列2,1,1,6,7,

因此中位数为1.

故答案为1【点睛】本题考查了中位数,正确理解中位数的意义是解题的关键.16、【解析】

由平行四边形的性质可知:AD∥BC,BC=AD,所以△ADF∽△CEF,所以EF:DF=CE:AD,又CE:AD=CE:BC=1:2,问题得解.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD,∴△ADF∽△CEF,∴EF:DF=CE:AD,∵E为BC中点,∴CE:AD=CE:BC=1:2,∴=.故答案为:.【点睛】此题考查平行四边形的性质,相似三角形的判定与性质,解题关键在于证明三角形相似17、-1≤m<0【解析】分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.详解:∵不等式组的解集为又∵不等式组恰有两个整数解,∴解得:.恰有两个整数解,故答案为:点睛:考查一元一次不等式的整数解,解题的关键是写出不等式组的解集.18、79【解析】

解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)故答案为79三、解答题(共78分)19、(1)详见解析;(2)以上结论仍然成立.【解析】

(1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,则利用等角的余角相等得到∠GAE=∠OBE,则可根据”ASA“判断△AOF≌△BOE,从而得到OF=OE;(2)同样方法证明△AOF≌△BOE,仍然得到OF=OE.【详解】解:(1)证明:∵四边形ABCD为正方形,∴OA=OB,∠AOB=∠BOC=90°,∵AG⊥BE于点G,∴∠AGE=90°,∴∠GAE=∠OBE,在△AOF和△BOE中,,∴△AOF≌△BOE(ASA),∴OF=OE;(2)解:以上结论仍然成立.理由如下:同样可证明△AOF≌△BOE(ASA),所以OF=OE.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.20、(1)详见解析;(2)①AD=BC;②AD⊥BC.【解析】

(1)利用两组对边分别平行的四边形是平行四边形,可得四边形AECD和四边形BFDC都是平行四边形,再由一组对边平行且相等的四边形是平行四边形可得CDEF是平行四边形.(2)①当AD=BC时,四边形EFCD是矩形.理由是:对角线相等的平行四边形是矩形;②当AD⊥BC时,四边形EFCD是菱形.理由是:对角线互相垂直的平行四边形是菱形.【详解】解:(1)证明:∵AB∥CD,CE∥AD,DF∥BC,∴四边形AECD和四边形BFDC都是平行四边形,∴AE=CD=FB,∵AB=3CD,∴EF=CD,∴四边形CDEF是平行四边形.(2)解:①当AD=BC时,四边形EFCD是矩形.理由:∵四边形AECD和四边形BFDC都是平行四边形,∴EC=AD,DF=BC,∴EC=DF,∵四边形EFDC是平行四边形,∴四边形EFDC是矩形.②当AD⊥BC时,四边形EFCD是菱形.理由:∵AD∥CE,DF∥CB,AD⊥BC,∴DF⊥EC,∵四边形EFCD是平行四边形,∴四边形EFCD是菱形.故答案为AD=BC,AD⊥BC.【点睛】本题考查了平行四边形的性质和判定,矩形的判定及菱形的判定.熟练掌握相关定理是解题关键.21、(1);(2)详见解析;(3)增大;【解析】

(1)把x=代入函数解析式即可得到结论;

(2)根据描出的点,画出该函数的图象即可;

(3)根据函数图象即可得到结论.【详解】解:(1)把x=代入y=x3得,y=;

故答案为:;

(2)如图所示:(3)根据图象得,当x<0时,y随x的增大而增大;当时,的最小值为-1.故答案为:增大;.【点睛】本题考查了函数的图象与性质,正确的画出函数的图形是解题的关键.22、(1)最大值为1,最小值为2,极差为48,平均数为17.7元.(2)填表见解析;(3)补图见解析.【解析】分析:(1)根据给出的数据以及极差、平均数的计算方法直接计算即可解答.

(2)分别找出各组的人数填表即可解答.

(3)根据频数分布表画出频数分布直方图即可解答.详解:(1)这30名学生捐款的最大值为1,最小值为2,极差为1﹣2=48,平均数为(2+5+35+8+5+10+15+20+15+5+45+10+2+8+20+30+40+10+15+15+30+15+8+25+25+30+15+8+10+1)÷30=17.7元.(2)填表如下:.(3)画图如下:点睛:本题主要考查极差、平均数的定义以及画频数分布直方图的能力,正确画图是关键.23、(1).,(2)直线CD的解析式的解析式为:;(3)点在矩形ABCD的外部.【解析】

根据中心对称的性质即可解决问题;利用待定系数法求出直线CD的解析式;根据直线CD的解析式,判定点与直线CD的位置关系即可解决问题.【详解】、C关于原点对称,,,、D关于原点对称,,,设直线CD的解析式为:,把,代入得:,解得:,直线CD的解析式的解析式为:;:;时,,,点在直线CD的下方,点在矩形ABCD的外部.【点睛】本题考查了中心对称的性质、一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能求出一次函数的解析式是解此题的关键.24、【问题情境】16;【操作发现】6+2;【操作探究】20或1.【解析】

【问题情境】首先由题意,可得AB=CD,AC=BD,∠ADB=∠DBC=90°,然后根据勾股定理,可得AB,即可求得四边形ABCD的周长;【操作发现】首先由平移,得AE=CF=3,DE=BF,再根据平行,即可判定四边形AECF是平行四边形,然后根据勾股定理,可得AF,即可求得四边形AECF的周长;【操作探究】首先由平移,得当点E与点F重合时,四边形ABCD为菱形,得出其对角线的长,沿对角线剪开的三角形组成的矩形有两种情况:以6为长,4为宽的矩形和以3为宽,8为长的矩形,即可求得其周长.【详解】由题意,可得AB=CD,AC=BD,∠ADB=∠DBC=90°又∵,,∴根据勾股定理,可得∴四边形的周长是故答案为16.由平移,得AE=CF=3,DE=BF.∵AE∥CF,∴四边形AECF是平行四边形.∵BE=DF=4,∴EF=DE=2.在Rt△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论