版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市景成实验中学2024届八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定 B.乙比甲的产量稳定C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定2.一组数据8,7,6,7,6,5,4,5,8,6的众数是()A.8 B.7 C.6 D.53.在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)20105105则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元 B.20元,35元 C.100元,35元 D.100元,30元4.如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是()A.平行四边形→菱形→平行四边形→矩形→平行四边形B.平行四边形→矩形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→正方形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形5.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)6.若,则下列式子中错误的是()A. B. C. D.7.如图,在一次实践活动课上,小明为了测量池塘B、C两点间的距离,他先在池塘的一侧选定一点A,然后测量出AB、AC的中点D、E,且DE=10m,于是可以计算出池塘B、C两点间的距离是()A.5m B.10m C.15m D.20m8.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36° B.18° C.27° D.9°9.顺次连接矩形四边中点所得的四边形一定是()A.正方形 B.矩形 C.菱形 D.等腰梯形10.若关于x的一元二次方程(x-a)2=4,有一个根为1,则a的值是().A.3B.1C.-1D.-1或311.甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,如图是购买甲、乙两家商场该商品的实际金额、(元)与原价(元)的函数图象,下列说法正确的是()A.当时,选甲更省钱 B.当时,甲、乙实际金额一样C.当时,选乙更省钱 D.当时,选甲更省钱12.如图,在中,点、分别是、的中点,平分,交于点,若,则的长是()A. B. C. D.二、填空题(每题4分,共24分)13.若方程有增根,则m的值为___________;14.2018年3月全国两会政府工作报告进一步强调“房子是用来住的,不是用来炒的”定位,继续实行差别化调控。这一年被称为史上房地产调控政策最密集、最严厉的年份。因此,房地产开发公司为了缓解年终资金周转和财务报表的压力,通常在年底大量促销。重庆某房地产开发公司一方面在“高层、洋房、别墅”三种业态的地产产品中作特价活动;另一方面,公司制定了销售刺激政策,对卖出特价的员工进行个人奖励:每卖出一套高层特价房奖励1万元,每卖出一套洋房特价房奖励2万元,每卖出一套别墅特价房奖励4万元.公司将销售人员分成三个小组,经统计,第一组平均每人售出6套高层特价房、4套洋房特价房、3套别墅特价房;第二组平均每人售出2套高层特价房、2套洋房特价房、1套别墅特价房;第三组平均每人售出8套高层特价房、5套洋房特价房。这三组销售人员在此次活动中共获得奖励466万元,其中通过销售洋房特价房所获得的奖励为216万元,且第三组销售人员的人数不超过20人。则第三组销售人员的人数比第一组销售人员的人数多___人.15.如图,在中,,且把的面积三等分,那么_____.16.直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.17.将一元二次方程通过配方转化成的形式(,为常数),则=_________,=_________.18.当x=时,二次根式的值为_____.三、解答题(共78分)19.(8分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时出发,已知先遣队的行进速度是大部队行进速度的1.2倍,预计先遣队比大部队早0.5小时到达目的地,求先遣队与大部队的行进速度。20.(8分)如图1,是的边上的中线.(1)①用尺规完成作图:延长到点,使,连接;②若,求的取值范围;(2)如图2,当时,求证:.21.(8分)如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.(1)若点与点重合,请直接写出点的坐标.(2)若点在的延长线上,且,求点的坐标.(3)若,求点的坐标.22.(10分)某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?23.(10分)计算:(1);(2)24.(10分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.(1)求6年1班40人一分钟内平均每人跳绳多少个?(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?25.(12分)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.26.如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.
参考答案一、选择题(每题4分,共48分)1、A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s=0.002<s=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差.解题关键点:理解方差意义.2、C【解析】
根据众数的含义:在一组数据中出现次数最多的数叫做这组数据的众数.【详解】在这组数据中6出现3次,次数最多,所以众数为6,故选:C.【点睛】本题考查众数的定义,学生们熟练掌握即可解答.3、A【解析】观察图表可得,捐款金额为20元的学生数最多为20人,所以众数为20元;已知共有50位同学捐款,可得第25位同学和26位同学捐款数的平均数为中位数,即中位数为=30元;故选A.4、A【解析】
根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.【详解】解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,
当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,
当15°<∠EOD<75°时,四边形AFCE为平行四边形,
当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,
当75°<∠EOD<105°时,四边形AFCE为平行四边形,
故选A.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.5、B【解析】试题分析:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,当x=3时,y=,∴点E坐标(3,)故选B.考点:1矩形;2轴对称;3平面直角坐标系.6、C【解析】
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.【详解】∵x>y,∴x+2>y+2,∴选项A不符合题意;∵x>y,∴x-2>y-2,∴选项B不符合题意;∵x>y,∴−2x<−2y,∴选项C符合题意;∵x>y,∴,∴选项D不符合题意,故选C.【点睛】此题考查不等式的性质,解题关键在于掌握其性质.7、D【解析】
根据三角形中位线定理可得到BC=2DE,可得到答案.【详解】∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴BC=2DE=20m,故选D.【点睛】本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.8、B【解析】试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选B.9、C【解析】矩形的性质,三角形中位线定理,菱形的判定.【分析】如图,连接AC.BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD.同理FG=BD,HG=AC,EF=AC.又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE.∴四边形EFGH为菱形.故选C.10、D【解析】试题分析:由题意把代入方程,即可得到关于a的方程,再解出即可.由题意得,解得-1或3,故选D.考点:方程的根的定义,解一元二次方程点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.11、D【解析】
根据函数图象和图象中的数据可知原价时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当时函数在上方,花费较贵,故甲商场较划算【详解】据函数图象和图象中的数据可知原价时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当时函数在上方,花费较贵,故甲商场较划算A.当时,选乙更省钱,故A选项错误;B.当时,选乙更省钱,故B选项错误;C.当时,甲、乙实际金额一样,故C选项错误;D.当时,选甲更省钱,故D选项正确;故答案为:D【点睛】本题考查了一次函数与方案选择问题,能够正确看懂函数图像,进行选择方案是解题的关键.12、B【解析】
先证明DE是中位线,由此得到DE∥AB,再根据角平分线的性质得到DF=BD,由此求出答案.【详解】∵点、分别是、的中点,∴DE是△ABC的中位线,BD=BC=3,∴DE∥AB,∴∠ABF=∠DFB,∵平分,∴∠ABF=∠CBF,∴∠DFB=∠CBF,∴BD=FD,∴DF=3,故选:B.【点睛】此题考查三角形的中位线定理,等腰三角形的性质,角平分线的性质,熟记定理并运用解题是关键.二、填空题(每题4分,共24分)13、-4或6【解析】
方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.【详解】方程两边同乘(x-2)(x+2),得2(x+2)+mx=3(x-2)∵原方程有增根,∴最简公分母(x+2)(x-2)=0,解得x=-2或2,当x=-2时,m=6,当x=2时,m=-4,故答案为:-4或6.【点睛】本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、9【解析】
假设第一组有x人,第二组y人,第三组z人,那么销售高层特价房共获奖励可表示为1×(6x+2y+8z)万元,销售洋房特价房共获奖励可表示为2×(4x+2y+5z)万元,销售别墅特价房共获奖励4×(3x+y)万元.【详解】设第一组有x人,第二组y人,第三组z人,依题意列三元一次方程组:化简①得18x+6y+8z=250④化简②得4x+2y+5z=108⑤由④-⑤得14x+4y+3z=142⑥由④×2-⑥×3得-6x+7z=74⑦即z+6(z-x)=74由z≤20得74-6(z-x)≤20解得z-x≥9故第三组销售人员的人数比第一组销售人员的人数多9人.【点睛】此题考查三元一次方程组的应用,解题关键在于列出方程.15、【解析】
根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.【详解】将的面积三等分,设的面积分别为,,,,故答案为:.【点睛】本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.16、(0,-3).【解析】
直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,即y=3x-3,当x=0时,y=-3,即与y轴交点坐标为(0,-3).17、43【解析】
依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.【详解】,,则,即,,.故答案为:(1);(2).【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18、【解析】
把x=代入求解即可【详解】把x=代入中,得,故答案为【点睛】熟练掌握二次根式的化简是解决本题的关键,难度较小三、解答题(共78分)19、大部队的行进速度为5千米/时,先遣队的行进速度为6千米/时【解析】【分析】设大部队的行进速度为x千米/时,则先遣队的行进速度为1.2x千米/时.由“先遣队比大部队早0.5小时到达目的地”,即时间关系可以列出,求解可得.【详解】设大部队的行进速度为x千米/时,则先遣队的行进速度为1.2x千米/时.根据题意,可列出方程.解得
.经检验,
是原方程的根,且符合题意.当
时,答:大部队的行进速度为5千米/时,先遣队的行进速度为6千米/时【点睛】本题考核知识点:列分式方程解应用题.解题关键点:根据时间差关系列出方程.20、(1)①详见解析;②1<<5;(2)详见解析【解析】
(1)①首先利用尺规作图,使得DE=AD,在连接CE,②首先利用≌可得AB=CE,在中,确定AE的范围,再根据AE=2AD,来确定AD的范围.(2)首先延长延长到点,使,连接和BE,结合,可证四边形是平行四边形,再根据,可得四边形是矩形,因此可证明.【详解】(1)①用尺规完成作图:延长到点,使,连接;②∵,,∴≌∴∴6-4<<6+4,即2<<10又∵∴1<<5(2)延长到点,使,连接∵∴四边形是平行四边形∵∴四边形是矩形∴∴.【点睛】本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等.21、(1);(2);(3),.【解析】
(1)与点重合则点E为(6,3)(2)作轴,证明:即则点E为(8,3)(3)分情况解答,在点右侧,过点作轴,证明:;在点左侧,点作轴,证明:【详解】解:(1)与点重合则点E再x轴的位置为2+4=6.(2)过点作轴,∵∠BAD=∠EMD=∠BDE=90°,∴∠BDA+∠ABD=∠BDA+∠MDE,∴∠ABD=∠MDE,∵BD=DE,,点在线段的中垂线上,.,..(3)①点在点右侧,如图,过点作轴,同(2)设,可得:,求得:,(舍去)②点在点左侧,如图,过点作轴,同上得设,可得:,,求得:,(舍去)综上所述:,【点睛】本题考查正方形的性质,解题关键在于分情况作出垂直线.22、2【解析】
设B车行驶x小时,则A行驶(1+20%)x小时,根据题意即可列出分式方程进行求解.【详解】解:设B车行驶x小时,则A行驶(1+20%)x小时.由题意得解得:x=2经检验:x=2是原方程的解.B车的行驶的时间为2小时.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.23、(1)(2)【解析】
(1)按顺序分别进行二次根式的化简,绝对值的化简,然后再进行合并即可;(2)按顺序进行分母有理化、利用平方差公式计算,然后再按运算顺序进行计算即可.【详解】(1)原式;(2)原式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 武汉工程职业技术学院《误差理论与测量平差基础》2023-2024学年第一学期期末试卷
- 2024版物业管理室内装修协议版B版
- 2024校园节能减排与物业管理服务合同
- 二零二五年度指南:国际合同第六号生皮供应链金融支持协议3篇
- 2025年度跨境电子商务平台合作运营协议规范文本2篇
- 2025年度窗帘品牌形象设计与传播服务合同3篇
- 天津工业职业学院《材料科学与工程创新创业》2023-2024学年第一学期期末试卷
- 2024版企业应收账款第三方担保债权转让合同3篇
- 二零二五年文化创意产业合作发展合同3篇
- 二零二五年度O2O农产品上行合作框架协议2篇
- 提优精练08-2023-2024学年九年级英语上学期完形填空与阅读理解提优精练(原卷版)
- DB4511T 0002-2023 瓶装液化石油气充装、配送安全管理规范
- 企业内部客供物料管理办法
- 妇科临床葡萄胎课件
- 三基三严练习题库与答案
- 传媒行业突发事件应急预案
- 小学英语时态练习大全(附答案)-小学英语时态专项训练及答案
- 《调试件现场管理制度》
- 社区治理现代化课件
- 代持房屋协议书
- 国际品牌酒店管理合同谈判要点
评论
0/150
提交评论