2024届四川省成都实验外国语学校八年级下册数学期末检测试题含解析_第1页
2024届四川省成都实验外国语学校八年级下册数学期末检测试题含解析_第2页
2024届四川省成都实验外国语学校八年级下册数学期末检测试题含解析_第3页
2024届四川省成都实验外国语学校八年级下册数学期末检测试题含解析_第4页
2024届四川省成都实验外国语学校八年级下册数学期末检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都实验外国语学校八年级下册数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,矩形的面积为,反比例函数的图象过点,则的值为()A. B. C. D.2.下面几种说法:①对角线互相垂直的四边形是菱形;②一组对边平行,一组邻边相等的四边形是菱形;③对角线相等的平行四边形是矩形;④对角线互相垂直平分的四边形是菱形,那么准确的说法是()A.①②③ B.②③ C.③④ D.②④3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.04.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对 B.①②都错C.①对②错 D.①错②对5.已知温州至杭州铁路长为380千米,从温州到杭州乘“G”列动车比乘“D”列动车少用20分钟,“G”列动车比“D”列动车每小时多行驶30千米,设“G”列动车速度为每小时x千米,则可列方程为()A. B.C. D.6.如图,在边长为2的菱形中,,,,则的周长为()A.3 B.6 C. D.7.五边形的内角和是()A.180° B.360° C.540° D.720°8.已知:如果二次根式是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.289.若的函数值随着的增大而增大,则的值可能是()A.0 B.1 C.-3 D.-210.如图,点P是正方形内一点,连接并延长,交于点.连接,将绕点顺时针旋转90°至,连结.若,,,则线段的长为()A. B.4 C. D.二、填空题(每小题3分,共24分)11.如图,将沿所在的直线平移得到,如果,,,那么______.12.从一副扑克牌中任意抽取1张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)13.点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1___________y2(选填“>”<”=”)14.关于的x方程=1的解是正数,则m的取值范围是_____.15.如图,两个大小完全相同的矩形ABCD和AEFG中AB=4cm,BC=3cm,则FC=_____.16.如图在△ABC中,AH⊥BC于点H,在AH上取一点D,连接DC,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。17.将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________18.如图,在矩形中,分别是边和的中点,,则的长为__________.三、解答题(共66分)19.(10分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).20.(6分)如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:①M点的坐标为.②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).21.(6分)先化简,再求值:÷(1﹣),请你给x赋予一个恰当的值,并求出代数式的值.22.(8分)解不等式组:请结合题意填空,完成本题解答:(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.23.(8分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、(1)求证:四边形ACED是矩形;(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.24.(8分)综合与探究问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.“兴趣小组”写出的两个数学结论是:①S△OMC+S△ONC=S正方形ABCD;②BM1+CM1=1OM1.问题解决:(1)请你证明“兴趣小组”所写的两个结论的正确性.类比探究:(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.25.(10分)如图,矩形中,分别是的中点,分别交于两点.求证:(1)四边形是平行四边形;(2).26.(10分)《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?请解答上述问题.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.【详解】由题意得:,又双曲线位于第二象限,则,

所以B选项是正确的.【点睛】本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.2、C【解析】

根据矩形和菱形的判定定理进行判断.【详解】解:对角线互相垂直平分的四边形是菱形,①错误,④正确;两组对边平行,一组邻边相等的四边形是菱形,②错误;对角线相等的平行四边形是矩形,③正确;∴正确的是③④,故选:C.【点睛】本题考查了矩形和菱形的判定,熟练掌握相关判定定理是解题的关键.3、D【解析】分析:根据根与系数的关系可得出x1x2=1,此题得解.详解:∵一元二次方程x2﹣2x=1的两根分别为x1和x2,∴x1x2=1.故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.4、A【解析】

根据题意得到四边形AMND为菱形,故可判断.【详解】解:∵四边形ABCD平行四边形,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故①②正确.故选A.5、D【解析】

设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x-30)千米,根据时间=路程÷速度结合行驶380千米“G”列动车比“D”列动车少用小时(20分钟),即可得出关于x的分式方程,此题得解.【详解】解:设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x﹣30)千米,依题意,得:.故选D.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.6、C【解析】

利用菱形的性质可得,AD=AB=BC=CD=2,∠ADC=120°由30°的直角三角形可得利用勾股定理得同理可得,∠FDC=30°,可证△DEF是等边三角形继而可得△DEF的周长为【详解】解:在菱形ABCD中,AD=AB=BC=CD=2∵DE⊥AB∴∠AED=90°∵∠A=60°∴∠ADE=30°,∠ADC=120°∴∴同理,∠FDC=30°∴∠EDF=60°,∵∴△DEF是等边三角形∴∴△DEF的周长为故答案为:C【点睛】本题考查了菱形的性质以及勾股定理和等边三角形的判定,正确掌握菱形的性质及含30°的直角三角形的性质是解题的关键.7、C【解析】

根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.【详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.【点睛】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.8、C【解析】

先将化为最简二次根式,然后根据是整数可得出n的最小值.【详解】=2,又∵是整数,∴n的最小值为1.故选C.【点睛】此题考查了二次根式的知识,解答本题的关键是将化为最简二次根式,难度一般.9、B【解析】

先根据一次函数的增减性判断出k的符号,进而可得出结论.【详解】解:的函数值y随着x的增大而增大,

各选项中只有B选项的1符合题意.

故选:B.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.10、D【解析】

如图作BH⊥AQ于H.首先证明∠BPP′=90°,再证明△PHB是等腰直角三角形,求出PH、BH、AB,再证明△ABH∽△AQB,可得AB2=AH•AQ,由此即可解决问题。【详解】解:如图作于.∵是等腰直角三角形,,∴,∵,,∴,∴,∵,∴,∴,AH=AP+PH=1+2=3,在中,,∵,,∴,∴,∴,故选:D.【点睛】本题考查正方形的性质、旋转变换、勾股定理的逆定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、【解析】

根据已知条件和平移的性质推出AB=DE=7,△ABC∽△GEC,即可根据相似三角形性质计算GE的长度.【详解】解:∵△ABC沿着射线BC的方向平移得到△DEF,AB=7,

∴DE=7,∠A=∠CGE,∠B=∠DEC,

∴△DEF∽△GEC,∴,

∵,,∴,∴EG=,

故填:.【点睛】本题主要考查平移的性质、相似三角形的判定和性质,解题的关键在于求证三角形相似,找到对应边.12、②【解析】

根据可能性等于所求情况与总数情况之比即可解题.【详解】解:一副扑克一共有54张扑克牌,A一共有4张,∴这张牌是“A”的概率是,这张牌是“红心”的概率是,这张牌是“大王”的概率是,∴其中发生的可能性最大的事件是②.【点睛】本题考查了简单的概率计算,属于简单题,熟悉概率公式是解题关键.13、>.【解析】

函数解析式y=-2x+b知k<0,可得y随x的增大而减小,即可求解.【详解】y=-2x+b中k<0,∴y随x的增大而减小,∵-1<2,∴y1>y2,故答案为>.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.14、m>﹣5且m≠0【解析】

先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.【详解】去分母,得m=x-5,即x=m+5,∵方程的解是正数,∴m+5>0,即m>-5,又因为x-5≠0,∴m≠0,则m的取值范围是m>﹣5且m≠0,故答案为:m>﹣5且m≠0.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.15、5cm【解析】

利用勾股定理列式求出AC的长度,再根据两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,然后判断出△ACF是等腰直角三角形,再利用等边三角形的性质求解即可.【详解】∵矩形ABCD中,AB=4cm,BC=3cm,∴AC===5cm,∵矩形ABCD和AEFG是两个大小完全相同的矩形,∴AC=AF,∠BAC+∠GAF=90°,∴△ACF是等腰直角三角形,∴FC=AC=5cm.故答案为5cm.【点睛】本题考查了矩形的对角线相等,每一个角都是直角的性质,勾股定理应用,判断出△ACF是等腰直角三角形是解题的关键.16、【解析】

如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,根据垂直的定义得到∠DHC=90°,由平行线的性质得到∠EBC=90°.由线段垂直平分线的性质得到BK=DH.推出四边形DKBH为矩形,得到DK⊥BE,根据等腰三角形的性质得到DE=DB,∠EDB=2∠KDB,通过△EDC≌△BDA,得到AB=CE,根据勾股定理得到,于是得到结论.【详解】解:如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,∵DH⊥BC于H,∴∠DHC=90°,∵BE∥DH,∴∠EBC=90°,∵∠EBC=90°,∵K为BE的中点,BE=2DH,∴BK=DH.∵BK∥DH,∴四边形DKBH为矩形,DK∥BH,∴DK⊥BE,∠KDB=∠DBC,∴DE=DB,∠EDB=2∠KDB,∵∠ADC=2∠DBC,∴∠EDB=∠ADC,∴∠EDB+∠EDA=∠ADC+∠EDA,即∠EDC=∠BDA,在△EDC、△BDA中,,∴△EDC≌△BDA,∴AB=CE,∴,∴AB=.【点睛】本题考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质,矩形的判定与性质,勾股定理的运用.关键是根据已知条件构造全等三角形.17、【解析】

根据图象平移的规律,左加右减,上加下减,即可得到答案.【详解】解:由题意得,y=-2x+4=-2(x+2)+4,即y=-2x,故答案为:y=-2x.【点睛】本题主要考查了一次函数图象与几何变换,掌握一次函数图象是解题的关键.18、6【解析】

连接AC,根据三角形中位线性质可知AC=2EF,最后根据矩形对角线相等进一步求解即可.【详解】如图所示,连接AC,∵E、F分别为AD、CD的中点,EF=3,∴AC=2EF=6,∵四边形ABCD为矩形,∴BD=AC=6,故答案为:6.【点睛】本题主要考查了三角形中位线性质与矩形性质的综合运用,熟练掌握相关概念是解题关键.三、解答题(共66分)19、(1)众数162,中位数161.5;(2)161cm;(3).【解析】

(1)根据统计图中的数据可以求得这组数据的中位数和众数;(2)根据加权平均数的求法可以解答本题;(3)根据题意可以设计出合理的方案,注意本题答案不唯一.【详解】解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,∴这10名女生的身高的中位数是:cm,众数是162cm,即这10名女生的身高的中位数和众数分别是161.5cm、162cm;(2)平均身高.(3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.【点睛】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)见解析;(2),;(3)①;②【解析】

(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;

(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;

(3)①求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;

②易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt△OAB中,D为OB的中点,

∴AD=OB,OD=BD=OB,

∴DO=DA,

∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,

又∵△OBC为等边三角形,

∴∠BCO=∠AEO=60°,∴BC∥AE,

∵∠BAO=∠COA=90°,∴CO∥AB,

∴四边形ABCE是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,

∴AB=4,

∴OA=,

∵四边形ABCE是平行四边形,

∴PB=PE,PC=PA,

∴PB=,∴∴,即∴;(3)①∵C(0,4),

设直线AC的解析式为y=kx+4,

∵P(,0),

∴0=k+4,

解得,k=,

∴y=x+4,

∵∠APM=90°,

∴直线PM的解析式为y=x+m,

∵P(,0),

∴0=×+m,

解得,m=-3,

∴直线PM的解析式为y=x-3,设M(x,x-3),

∵AP=,

∴(x-)2+(x-3)2=()2,

化简得,x2-4x-4=0,

解得,x1=,x2=(不合题意舍去),

当x=时,y=×()-3=,

∴M(,),

故答案为:(,);②∵∴直线BC的解析式为:,联立,解得,∴,【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.21、.【解析】

先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的x的值代入计算可得.【详解】原式===,当x=0时,原式=.【点睛】本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.22、(1)x≤2;(2)x>-3;(3)把不等式①和②的解集在数轴上表示见解析;(4)-3<x≤2,【解析】

(1)根据不等式的基本性质解不等式即可;(2)根据不等式的基本性质解不等式即可;(3)根据数轴表示解集的方法表示即可;(4)根据不等式组公共解集的取法即可得出结论.【详解】(1)解不等式①,得x≤2故答案为:x≤2;(2)解不等式②,得x>-3故答案为:x>-3;(3)把不等式①和②的解集在数轴上表示出来如下:(4)原不等式组的解集为-3<x≤2,【点睛】此题考查的是解不等式组,掌握不等式的基本性质和利用数轴表示解集是解决此题的关键.23、(1)证明见解析(2)∠E=2∠BDE【解析】

(1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,又由AC⊥AD,即可证得四边形ACED是矩形;

(2)根据矩形的性质得∠E=∠DAC=90°,可证得DA=AF,由等腰三角形的性质可得∠ADF=45°,则∠BDE=45°,可得出∠E=2∠BDE.【详解】(1)证明:因为ABCD是平行边形,∴AD=BC,AD∥BC,∵BC=CE,点E在BC的延长线上,∴AD=EC,AD∥EC,∴四边形ACED为平行四边形,∵AC⊥AD,∴平行四边形ACED为矩形(2)∠E=2∠BDE理由:∵平行四边形ABCD中,AC=2AF,又∵AC=2AD,∴AD=AF,∴∠ADF=∠AFD,∵AC∥ED,∴∠BDE=∠BFC,∵∠BFC=∠AFD,∴∠BDE=∠ADF=45°,∴∠E=2∠BDE【点睛】此题考查了矩形的判定与性质.熟悉矩形的判定和性质是关键.24、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.【解析】

(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;(1)同(1)的方法即可得出结论.【详解】解:(1)①∵正方形ABCD的对角线相交于O,∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,∵四边形OEFG是正方形,∴∠MON=90°,∴∠BOC﹣∠MOC=∠MON﹣∠MOC,∴∠BOM=∠COM,∴△BOM≌△CON,∴S△BOM=S△CON,∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;②由①知,△BOM≌△CON,∴OM=ON,BM=CN,在Rt△MCN中,MN1=CM1+C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论