江苏省淮安市朱坝中学2024年八年级下册数学期末预测试题含解析_第1页
江苏省淮安市朱坝中学2024年八年级下册数学期末预测试题含解析_第2页
江苏省淮安市朱坝中学2024年八年级下册数学期末预测试题含解析_第3页
江苏省淮安市朱坝中学2024年八年级下册数学期末预测试题含解析_第4页
江苏省淮安市朱坝中学2024年八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安市朱坝中学2024年八年级下册数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若关于x的不等式组有且仅有5个整数解,且关于y的分式方程有非负整数解,则满足条件的所有整数a的和为()A.12 B.14 C.21 D.332.当a<0,b<0时,-a+2-b可变形为()A. B.- C. D.3.已知点在抛物线上,则下列结论正确的是()A. B. C. D.4.平行四边形所具有的性质是()A.对角线相等 B.邻边互相垂直C.两组对边分别相等 D.每条对角线平分一组对角5.如图,已知四边形是平行四边形,、分别为和边上的一点,增加以下条件不能得出四边形为平行四边形的是()A. B. C. D.6.下列等式从左到右的变形,属于因式分解的是()A. B.C. D.7.下列命题是真命题的是()A.对角线相等的四边形是平行四边形 B.对角线互相平分且相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直的四边形是平行四边形8.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()A.10 B.16 C.20 D.369.将一个边长为4cn的正方形与一个长,宽分別为8cm,2cm的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是()A. B. C. D.10.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,点在直线上,点关于轴的对称点恰好落在直线上,则的值为_____.12.如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为_________.13.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.14.不等式4x﹣6≥7x﹣15的正整数解的个数是______.15.计算:+×=________.16.函数y=36x-10的图象经过第______象限.17.如图,在平行四边形中,已知,,,点在边上,若以为顶点的三角形是等腰三角形,则的长是_____.18.已知是整数,则正整数n的最小值为___三、解答题(共66分)19.(10分)定义:对于给定的一次函数y=ax+b(a≠0),把形如的函数称为一次函数y=ax+b(a≠0)的衍生函数.已知矩形ABCD的顶点坐标分别为A(1,0),B(1,2),C(-3,2),D(-3,0).(1)已知函数y=2x+l.①若点P(-1,m)在这个一次函数的衍生函数图像上,则m=.②这个一次函数的衍生函数图像与矩形ABCD的边的交点坐标分别为.(2)当函数y=kx-3(k>0)的衍生函数的图象与矩形ABCD有2个交点时,k的取值范围是.20.(6分)先化简,再求值:,其中a=1+.21.(6分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方作△DEA,且使DE∥AC,AE∥BD.(1)求证:四边形DEAP是菱形;(2)若AE=CD,求∠DPC的度数.22.(8分)如图,在正方形ABCD中,点E为AB上的点(不与A,B重合),△ADE与△FDE关于DE对称,作射线CF,与DE的延长线相交于点G,连接AG,(1)当∠ADE=15°时,求∠DGC的度数;(2)若点E在AB上移动,请你判断∠DGC的度数是否发生变化,若不变化,请证明你的结论;若会发生变化,请说明理由;(3)如图2,当点F落在对角线BD上时,点M为DE的中点,连接AM,FM,请你判断四边形AGFM的形状,并证明你的结论。23.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米?24.(8分)如图①,在平面直角坐标系中,是函数的图像上一点,是y轴上一动点,四边形ABPQ是正方形(点A.B.P.Q按顺时针方向排列)。(1)求a的值;(2)如图②,当时,求点P的坐标;(3)若点P也在函数的图像上,求b的值;(4)设正方形ABPQ的中心为M,点N是函数的图像上一点,判断以点P.Q.M.N为顶点的四边形能否是正方形,如果能,请直接写出b的值,如果不能,请说明理由。图①图②备用图25.(10分)如图1,平行四边形ABCD在平面直角坐标系中,A、B(点A在点B的左侧)两点的横坐标是方程32x2-23x-63(1)求平行四边形ABCD的面积;(2)若P是第一象限位于直线BD上方的一点,过P作PE⊥BD于E,过E作EH⊥x轴于H点,作PF∥y轴交直线BD于F,F为BD中点,其中△PEF的周长是4+42;若M为线段AD上一动点,N为直线BD上一动点,连接HN,NM,求HN+NM-1010DM的最小值,此时y轴上有一个动点G,当(3)在(2)的情况下,将△AOD绕O点逆时针旋转60°后得到ΔA'OD'如图2,将线段OD'沿着x轴平移,记平移过程中的线段OD'为O'D″,在平面直角坐标系中是否存在点26.(10分)如图,、分别为的边、的中点,,延长至点,使得,连接、、.若时,求四边形的周长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

先解不等式组,根据有5个整数解,确定a的取值2<a≤9,根据关于y的分式方程,得y=,根据分式方程有意义的条件确定a≠4,从而可得a的值并计算所有符合条件的和.【详解】解:,解①得:x≤4,解②得:x>,∴不等式组解集为:<x≤4,∵不等式组有且仅有5个整数解,即0,1,2,3,4,∴-1≤<0,∴2<a≤9,−=1,去分母得:-y+a-3=y-1,y=,∵y有非负整数解,且y≠1,即a≠4,∴a=6或8,6+8=14,故选B.【点睛】本题考查了一元一次方程组的解、分式方程的解,此类题容易出错,根据整数解的个数确定字母系数a的值,有难度,要细心.2、C【解析】试题解析:∵a<1,b<1,

∴-a>1,-b>1.

∴-a+2-b=()2+2+()2,

=()2.

故选C.3、A【解析】

分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选:A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况4、C【解析】

根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,即可得出答案.【详解】解:平行四边形的对角相等,对角线互相平分,两组对边平行且相等.故选:C.【点睛】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.5、B【解析】

逐项根据平行四边形的判定进行证明即可解题.【详解】解:∵四边形是平行四边形,∴AB∥CD,AD∥BC,∠A=∠C,∠ABC=∠ADC,AB=CD,AD=BC,A.若,易证ED=BF,∵ED∥BF,∴四边形为平行四边形,B.若,由于条件不足,无法证明四边形为平行四边形,C.若,∴,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,D.若,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,故选B【点睛】本题考查了平行四边形的判定与性质,可以针对各种平行四边形的判定方法,给出条件,本题可通过构造条件证△AEB≌△CFD来解题.6、B【解析】

根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;

B、是因式分解,故本选项符合题意;

C、不是因式分解,故本选项不符合题意;

D、不是因式分解,故本选项不符合题意;

故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.7、C【解析】

根据对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直平分的四边形是菱形,即可做出解答。【详解】解:A、对角线相等的四边形是平行四边形,说法错误,应是对角线互相平分的四边形是平行四边形;B、对角线互相平分且相等的四边形是平行四边形,说法错误,应是矩形;C、对角线互相平分的四边形是平行四边形,说法正确;D、对角线互相垂直平分的四边形不一定是平行四边形,错误;故选:C.【点睛】本题主要考查了平行四边形,以及特殊的平行四边形的判定,关键是熟练掌握各种四边形的判定方法.8、C【解析】

点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=AB•BC=×4×5=10∴矩形ABCD的面积=2S=20故选:C.【点睛】本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.9、B【解析】

分别计算出各个图形的重叠部分面积即可求解.【详解】A.重叠部分为矩形,长是4宽是2,,所以面积为4×2=8;B.重叠部分是平行四边形,与正方形边重合部分的长大于2,高是4,所以面积大于8;C.图C与图B对比,因为图C的倾斜度比图B的倾斜度小,所以,图C的底比图B的底小,两图为等高不等底,所以图C阴影部分的面积小于图B阴影部分的面积;D.如图,BD=42+4∴GH=42∴S重叠部分=2×(42+42故选B.【点睛】本题主要考查平行四边形的、矩形及梯形的面积的运算,分别对选项进行计算判断即可.10、B【解析】

若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).二、填空题(每小题3分,共24分)11、1【解析】

由点A的坐标以及点A在直线y=-2x+3上,可得出关于m的一元一次方程,解方程可求出m值,即得出点A的坐标,再根据对称的性质找出点B的坐标,由点B的坐标利用待定系数法即可求出k值.【详解】解:点A在直线上,

点A的坐标为.

又点A、B关于y轴对称,

点B的坐标为,

点在直线上,

,解得:.

故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征以及关于x、y轴对称的点的坐标,解题的关键是求出点B的坐标.解决该题型时,找出点的坐标,利用待定系数法求出函数系数是关键.12、【解析】设直线的解析式为y=kx+b(k≠0),∵A(1,1),B(4,0),,解之得,∴直线AB的解析式为,∵P(2,m)在直线上,.13、3;【解析】

先利用勾股定理求出BC的长,然后再根据中位线定理求出EF即可.【详解】∵直角三角形ABC中,∠C=90°,AB=10,AC=8,∴BC==6,∵点E、F分别为AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=×6=3,故答案为3.【点睛】本题考查了勾股定理,三角形中位线定理,熟练掌握这两个定理的内容是解本题的关键.14、3【解析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可【详解】不等式的解集是x≤3,故不等式4x-6≥7x-15的正整数解为1,2,3故答案为:3【点睛】此题考查一元一次不等式的整数解,掌握运算法则是解题关键15、3【解析】

先根据二次根式的乘法法则运算,然后化简后合并即可.【详解】解:原式=2+=3.故答案为:3.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.16、【解析】

根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.【详解】解:因为函数中,,,所以函数图象过一、三、四象限,故答案为:一、三、四.【点睛】此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.17、2或或【解析】

分AB=BP,AB=AP,BP=AP三种情况进行讨论,即可算出BP的长度有三个.【详解】解:根据以为顶点的三角形是等腰三角形,可分三种情况①若AB=BP∵AB=2∴BP=2②若AB=AP过A点作AE⊥BC交BC于E,∵AB=AP,AE⊥BC∴BE=EP在Rt△ABE中∵∴AE=BE根据勾股定理AE2+BE2=AB2即2BE2=4解得BE=∴BP=③若BP=AP,则过P点作PF⊥AB∵AP=BP,PF⊥AB∴BF=AB=1在Rt△BFP中∵∴PF=BF=1根据勾股定理BP2=BF2+PF2即BP2=1+1=2,解得BP=∵2,,都小于3故BP=2或BP=或BP=.【点睛】本题主要考查了等腰三角形的性质和判定以及勾股定理,能利用分类讨论思想分三类情况进行讨论是解决本题的关键.BC=3在本题中的作用是BP的长度不能超过3,超过3的答案就要排除.18、1【解析】

因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,

∴是整数,即1n是完全平方数;

∴n的最小正整数值为1.

故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.三、解答题(共66分)19、(1)①1,②(,2)或(,,0);(2)1<k<1;【解析】

(1)①x=-1<0,则m=-2×(-1)+1=1,即可求解;②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,即可求解;(2)当直线在位置①时,函数和矩形有1个交点,当直线在位置②时,函数和图象有1个交点,在图①②之间的位置,直线与矩形有2个交点,即可求解.【详解】解:(1)①x=-1<0,则m=-2×(-1)+1=1,故答案为:1;②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,当y=2时,2x+1=2,解得:x=,当y=0时,2x+1=0,解得:x=,故答案为:(,2)或(,,0);(2)函数可以表示为:y=|k|x-1,如图所示当直线在位置①时,函数和矩形有1个交点,当x=1时,y=|k|x-1=1|k|-1=0,k=±1,k>0,取k=1当直线在位置②时,函数和图象有1个交点,同理k=1,故在图①②之间的位置,直线与矩形有2个交点,即:1<k<1.【点睛】本题为一次函数综合题,涉及到新定义、直线与图象的交点等,其中(2),要注意分类求解,避免遗漏.20、原式=【解析】

首先把除法化为乘法进行计算,再进一步相减,然后把a的值代入计算【详解】解:原式=====当a=1+.时,原式==【点睛】本题考查了分式的化简求值,熟练掌握分母有理化是解题的关键.21、(1)见解析;(2)∠DPC=60°.【解析】试题分析:(1)由题中由已知条件可得其为平行四边形,再加上一组邻边相等即为菱形.(2)由(1)中的结论即可证明△PDC为等边三角形,从而得出∠DPC=60°.试题解析:(1)∵DE∥AC,AE∥BD,∴四边形DEAP为平行四边形,∵ABCD为矩形,∴AP=AC,DP=BD,AC=BD,∴AP=PD,PD=CP,∴四边形DEAP为菱形;∵四边形DEAP为菱形,∴AE=PD,∵AE=CD,∴PD=CD,∵PD=CP(上小题已证),∴△PDC为等边三角形,∴∠DPC=60°.考点:菱形的判定.22、(1)∠DGC=45°;(2)∠DGC=45°不会变化;(3)四边形AGFM是正方形【解析】

(1)根据对称性及正方形性质可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度数;(2)由(1)知△DFC为等腰三角形,得出DF=DC,求出∠DFC=45º+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45º;(3)证明FG=MF=MA=AG,∠AGF=90º,即可得出结论.【详解】(1)△FDE与ADE关于DE对称∴△FDE≌△ADE∴∠FDE=∠ADE=15º,AD=FD∴∠ADF=2∠FDE=30º∵ABCD为正方形∴AD=DC=FD,∠ADC=∠DAC=∠DFE=90º∴∠FDC=∠ADC-∠ADF=60º∴△DFC为等边三角形∴∠DFC=60º∵∠DFC为△DGF外角∴∠DFC=∠FDE+∠DGC∴∠DGC=∠DFC-∠FDE=60-15º=45º(2)不变.证明:由(1)知△DFC为等腰三角形,DF=DC∴∠DFC=∠DCF=(180º-∠CDF)=90º-∠CDF①∵∠CDF=90º-∠ADF=90º-2∠EDF②将②代入①得∠DFC=45º+∠EDF∵∠DFC=∠DGC+∠EDF∴∠DGC=45º(3)四边形AMFG为正方形.证明:∵M为Rt△ADE中斜边DE的中点∴AM=DE∵M为Rt△FED中斜边DE的中点∴FM=DE=AM=MD由(1)知△AED≌△FED∴AD=DF,∠ADG=∠FDG△ADG与△FDG中,AD=DF,∠ADG=∠FDG,DG=DG∴△ADG≌△FDG,由(2)知∠DGC=45º∴∠DGA=∠DGF=45º,AG=FG,∠AGF=∠DGA+∠DGF=90º∵DB为正方形对角线,∴∠ADB=∠45º,∵∠ADG=∠GDF=∠ADB=22.5º∵DM=FM∴∠GDF=∠MFD=22.5º∵∠GMF=∠GDF+∠MFD=45º∴∠GMF=∠DGF=45º∴MF=FG∴FG=MF=MA=AG,∠AGF=90º∴四边形AMFG为正方形。【点睛】本题主要考查了正方形的性质与判定.解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23、1200米【解析】试题分析:由题可看出,A,B,C三点构成一个直角三角形,AB,BC为直角边,AC,是斜边,可设AB=X,AC=10+X因为BC=50根据勾股定理可知考点:勾股定理,三角函数的值点评:本题属于勾股定理的基本运算和求解方法,在解题中需要合理的作图24、(1);(2)P的坐标为.(3)或(4)或.【解析】

(1)利用待定系数法即可解决问题.

(2)如图②中,作PE⊥x轴于E,AF⊥x轴于F.利用全等三角形的性质解决问题即可.

(3)如图③中,作AF⊥OB于F,PE⊥OB于E.利用全等三角形的性质求出点P的坐标,再利用待定系数法解决问题即可.

(4)如图④中,当点N在反比例函数图形上时,想办法用b表示点N的坐标,利用待定系数法解决问题即可.【详解】(1)解:把代入,得;(2)解:如图①,过点A作轴,垂足为M,过点P作轴,垂足为T,即.四边形ABPQ是正方形,,,,,,,,A的坐标为,,,P的坐标为.(3)解:如图②I.当时,分别过点A、P作轴、轴,垂足为、N.与(2)同理可证:,,,,;II.当时,过点作轴,垂足为.同理:,,综上所述,点P的坐标为,点P在反比例函数图像上,,解得或(4)或.图①图②【点睛】本题属于反比例函数综合题,考查了待定系数法,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25、(1)S平行四边形ABCD=48;(2)G(0,11423),见解析;(3)满足条件的点S的坐标为1-733,-2或【解析】

(1)解方程求出A,B两点坐标,在Rt△AOD中,求出OD即可解决问题.(2)首先证明△EHB也是等腰直角三角形,以HE,HB为边构造正方形EHBJ,连接JN,延长JE交OD于Q,作MT⊥OD于T,连接JT.在Rt△DMT中,易知MT=1010DM,根据对称性可知:NH=NJ,推出HN+MM-1010DM=NJ+MN-MT≤JT,推出当JT最小时,HN+MM-1010DM的值最小.如图2中当点M在JQ的延长线上时,HN+MM-1010DM的值最小,此时M(-13,5),作点M关于y轴对称点M′,连接CM′,延长CM′交y轴于点G(3)分五种情形分别画出图形,利用菱形的性质,中点坐标公式等知识一一求解即可.【详解】解:(1)由32x2-23∴A(-2,0),B(1,0);在Rt△ADO中,∵∠AOD=90°,AD=210,OA=2;∴OD=A∵OB=1,∴OD=OB=1,∴△BOD是等腰直角三角形,∴S平行四边形ABCD=AB•OD=8×1=48;(2)如图1中,∵EH⊥OB,∴∠EHB=90°,∵△BOD是等腰直角三角形,∴∠EBH=45°,∴△EHB也是等腰直角三角形,以HE,HB为边构造正方形EHBJ,连接JN,延长JE交OD于Q,作MT⊥OD于T,连接JT,在Rt△DMT中,易知MT=1010DM∵四边形EHBJ是正方形,根据对称性可知:NH=NJ,∴HN+MM-1010DM=NJ+MN-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论