2024年广东省阳江市江城区数学八年级下册期末质量检测试题含解析_第1页
2024年广东省阳江市江城区数学八年级下册期末质量检测试题含解析_第2页
2024年广东省阳江市江城区数学八年级下册期末质量检测试题含解析_第3页
2024年广东省阳江市江城区数学八年级下册期末质量检测试题含解析_第4页
2024年广东省阳江市江城区数学八年级下册期末质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东省阳江市江城区数学八年级下册期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,有一个平行四边形和一个正方形,其中点在边上.若,,则的度数为()A.55º B.60º C.65º D.75º2.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号

220

225

230

235

240

245

250

数量(双)

3

5

10

15

8

3

2

对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数 B.众数 C.中位数 D.方差3.计算的结果是()A.-3 B.3 C.6 D.94.反比例函数y=,当x的值由n(n>0)增加到n+2时,y的值减少3,则k的值为()A. B. C.﹣ D.5.下列二次根式,是最简二次根式的是()A. B. C. D.6.a,b,c为常数,且,则关于x的方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为07.下列计算结果正确的是A. B. C. D.8.若A(x1,y1)、B(x2,y2)是一次函数y=ax+x-2图像上的不同的两点,记,则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<-1 D.a>-19.如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为()A.6cm B.8cm C.5cm D.4cm10.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x≠1二、填空题(每小题3分,共24分)11.某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.12.本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.温度/℃22242629天数213113.若分式方程有增根,则a的值为_____.14.不等式的正整数解的和______;15.若x+y=1,xy=-7,则x2y+xy2=_____________.16.如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为_____.17.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________.18.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.三、解答题(共66分)19.(10分)如图1,在ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F.(1)求∠BFC的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF,EG与DG交于点G,求∠EGD的度数.20.(6分)如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上.若点,在线段上,且为某个一边与轴平行的矩形的对角线,则称这个矩形为点、的“涵矩形”.下图为点,的“涵矩形”的示意图.(1)点的坐标为.①若点的横坐标为,点与点重合,则点、的“涵矩形”的周长为__________.②若点,的“涵矩形”的周长为,点的坐标为,则点,,中,能够成为点、的“涵矩形”的顶点的是_________.(2)四边形是点、的“涵矩形”,点在的内部,且它是正方形.①当正方形的周长为,点的横坐标为时,求点的坐标.②当正方形的对角线长度为时,连结.直接写出线段的取值范围.21.(6分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.22.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求一次函数y=kx+b的解析式;(2)若点D在y轴负半轴上,且满足S△COD═S△BOC,请直接写出点D的坐标.23.(8分)甲,乙两人沿汀江绿道同地点,同方向运动,甲跑步,乙骑车,两人都匀速前行,若甲先出发60s,乙骑车追赶且速度是甲的两倍在运动的过程中,设甲,乙两人相距,乙骑车的时间为,y是t的函数,其图象的一部分如图所示,其中.(1)甲的速度是多少;(2)求a的值,并说明A点坐标的实际意义;(3)当时,求y与t的函数关系式.24.(8分)如图,在梯形ABCD中,AD∥BC,AB=4,∠C=30°,点E、F分别是边AB、CD的中点,作DP∥AB交EF于点G,∠PDC=90°,求线段GF的长度.25.(10分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.26.(10分)已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B(,).(1)求这两个函数的表达式;(2)观察图象,当>0时,直接写出>时自变量的取值范围;(3)如果点C与点A关于轴对称,求△ABC的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

首先根据,结合已知可得的度数,进而计算的度数.【详解】解:根据平角的性质可得又四边形为正方形在三角形DEC中四边形为平行四边形故选D.【点睛】本题主要考查平角的性质和三角形的内角定理,这些是基本知识,必须熟练掌握.2、B【解析】

众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.3、B【解析】

根据算数平方根的意义解答即可.【详解】∵32=9,∴=3.故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.4、D【解析】

根据函数的增减性,可得分式方程,根据解分式方程,可得答案.【详解】由题意,得﹣=3,解得k=,故选:D.【点睛】本题考查了反比例函数,利用函数的增减性得出分式方程是解题关键.5、D【解析】

根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.【详解】A,,不是最简二次根式,故错误;B,,不是最简二次根式,故错误;C,,不是最简二次根式,故错误;D,是最简二次根式,故正确;故选:D.【点睛】本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.6、B【解析】试题解析:∵,∴ac<1.在方程中,△=≥﹣4ac>1,∴方程有两个不相等的实数根.故选B.7、C【解析】

根据二次根式的运算法则进行分析.【详解】A.,不是同类二次根式,不能合并,本选项错误;B.,本选项错误;C.,本选项正确;D.,本选项错误.故选C【点睛】本题考核知识点:二次根式运算.解题关键点:理解二次根式运算法则.8、C【解析】

∵A(x1,y1)、B(x2,y2)是一次函数图象上的不同的两点,,

∴该函数图象是y随x的增大而减小,

∴a+1<0,

解得a<-1,

故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.9、D【解析】

根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.【详解】根据折叠前后角相等可知∠DCA=∠ACO,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=4cm,∴∠DCA=∠CAO,∴∠ACO=∠CAO,∴AO=CO,在直角三角形BCO中,CO==5cm,∴AB=CD=AO+BO=3+5=8cm,在Rt△ABC中,AC=cm,故选:D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.10、D【解析】

要使分式有意义,则必须分母不等于0.【详解】使分式有意义,则x-1≠0,所以x≠1.故选D【点睛】本题考核知识点:分式有意义的条件.解题关键点:记住要使分式有意义,则必须分母不等于0.二、填空题(每小题3分,共24分)11、【解析】

根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.【详解】解:根据题意,y=400x+500(100-x)=-100x+50000;故答案为【点睛】本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.12、1.【解析】

根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.【详解】解:数据1出现了3次,次数最多,所以这组数据的众数是1.故答案为:1.【点睛】众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.13、3【解析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:分式方程去分母得:x﹣5(x﹣3)=a,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:a=3,故答案为:3【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14、3.【解析】

先解出一元一次不等式,然后选取正整数解,再求和即可.【详解】解:解得;x<3,;则正整数解有2和1;所以正整数解的和为3;故答案为3.【点睛】本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.15、﹣7【解析】∵x+y=1,xy=﹣7,∴x2y+xy2=xy(x+y)=-7×1=-7.16、6cm1.【解析】

用四边形DBCE的面积减去△DOE的面积+△HOG的面积,即可得.【详解】解:连接DE,作AF⊥BC于F,∵D,E分别是AB,AC的中点,∴DE=BC=3,DE∥BC,∵AB=AC,AF⊥BC,∴BF=BC=3,在Rt△ABF中,AF==4,∴△ABC的面积=×6×4=11,∵DE∥BC,∴△ADE∽△ABC,∴△ADE的面积=11×=3,∴四边形DBCE的面积=11﹣3=9,△DOE的面积+△HOG的面积=×3×1=3,∴图中阴影部分的面积=9﹣3=6(cm1),故答案为6cm1.【点睛】本题考查的知识点是三角形中位线定理,解题关键是作适当的辅助线进行解题.17、26cm【解析】

先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=26(cm),于是得到四边形ABFD的周长为26cm.【详解】∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故答案是:26cm.【点睛】考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.18、1.【解析】解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.三、解答题(共66分)19、(1)130〬(2)155〬【解析】

(1)根据三角形的内角和是180°,可知∠BFC=180°-∠FBC-∠FCB,由BD,CE分别平分∠ABC,∠ACB,可知∠FBC=∠ABC,∠FCB=∠ACB,即∠BFC=180°-(∠ABC+∠ACB),再由三角形的内角和是180°,得出∠ABC+∠ACB=180°-∠A,从而求出∠BFC的度数;(2)由角平分线的定义可得,,由四边形内角和定理可知,继而得到,再根据四边形内角和定理即可求得答案.【详解】(1)∵BD、CE分别平分∠ABC、∠ACB,∴,,∵,∴∠BFC=;(2)∵EG、DG分别平分∠AEF、∠ADF,∴,,∵,∴,∴∠EGD.【点睛】本题考查了三角形内角和定理、四边形内角和定理,熟练掌握相关知识是解题的关键.注意数形结合思想的运用.20、(1)①.②;(2)①点的坐标为或.②.【解析】

(1)①利用A、B的坐标求出直线AB的解析式,再将P点横坐标代入,计算即可得点、的“新矩形”的周长;②由直线AB的解析式判定是否经过E、F、G三点,发现只经过了F(1,2),能够成为点、的“涵矩形”的顶点的是F(1,2)(2)①①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由的横坐标为,可得出点P的坐标,再由正方形的周长可得出点Q的坐标,进而可得出点Q的坐标;②由正方形的对角线长度为,可得正方形的边长为1,由直线AB的解析式y=-x+6可知M点的运动轨迹是直线y=-x+5,由点在的内部,x的取值范围是0<x<5,OM<5,OM最小值是由O向直线y=-x+5作垂线段,此时OM=,可得OM的取值范围.【详解】(1)①解:由A(0,6),B(3,0)可得直线AB的解析式为:y=-2x+6,∵P点横坐标是∴当x=时,y=3∴P(,3).∵点与点重合,∴Q(3,0)∴点、的“涵矩形”的宽为:3-=,长为3-0=3∴点、的“涵矩形”的周长为:故答案为9②.由①可得直线AB的解析式为:y=-2x+6可设Q(a,-2a+6),则成为点、的“涵矩形”的顶点且在AOB内部的一点坐标为M(1,-2a+6)∴PM=4-(-2a+6)=2a-2,MQ=a-1∵点,的“涵矩形”的周长为∴PM+MQ=3∴2a-2+a-1=3解得:a=2∴M(1,2)故答案为F(1,2),只写或也可以.(2)①点、的“涵矩形”是正方形,,点的坐标为,点的坐标为,直线的函数表达式为.点的横坐标为,点的坐标为.正方形的周长为,点的横坐标为或,点的坐标为或.②∵正方形的对角线长度为,∴可得正方形的边长为1,因为直线AB的解析式y=-x+6可设M点的运动轨迹是直线y=-x+b,且过(0,5)故M点的运动轨迹是直线y=-x+5∵点在的内部,x的取值范围是0<x<5,∴当M落在OB或者OA边上时,OM取得最大值,此时OM=5,由于点在的内部,∴OM<5,当OM⊥直线y=-x+5时,OM取得最小值,此时OM=,∴OM的取值范围..故答案为【点睛】本题考查了新型定义题型,矩形、正方形、一次函数、线段最值等问题,难度较高,审清题意,会综合运用矩形、正方形、一次函数以及最值的求法,是解题的关键.21、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)【解析】

(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)∠QEP=60°;证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,则在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因为△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为60;(2)∠QEP=60°.以∠DAC是锐角为例.证明:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;

(3)连结CQ,作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH−AH=-,∴BQ=−.【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.22、(1)y=−x+4;(2)(0,−6)【解析】

(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A.C的坐标,利用待定系数法即可求出k、b的值;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD═S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标。【详解】(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(−2,6)、C(1,3)代入y=kx+b,得:,解得:,∴一次函数y=kx+b的表达式为:y=−x+4;(2)当y=0时,有−x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m)(m<0),∵S△COD═S△BOC,即−m=××4×3,解得:m=−6,∴点D的坐标为(0,−6).【点睛】此题考查一次函数图象上点的坐标特点,待定系数法求一次函数解析式,两条直线相交或平行问题,解题关键在于把已知点代入解析式求出k,b的值23、(1)甲的速度为;(2),A点坐标的实际意义是:当乙骑车的时间是60

s时,乙追上甲;(3)当时,【解析】

1根据图象中的数据和题意可以求得甲的速度;2根据甲的速度可以求得乙的速度,再根据图象和题意即可求得点A的坐标和写出点A表示的实际意义;3根据题意可以求得当t大于a时对应的函数解析式.【详解】(1)由题意可得,甲的速度为:,故答案为4;(2)由1知,乙的速度为8

,依题意,可得解得,,点A的坐标为:,A点坐标的实际意义是:当乙骑车的时间是60

s时,乙追上甲;(3)由题意知,当时,甲乙两人之间的距离是即直线上另一点的坐标为,当时,设y与t的函数关系式为:,直线过点,,,解得:,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论