2024年江苏省盐城市大丰区实验初级中学数学八年级下册期末经典模拟试题含解析_第1页
2024年江苏省盐城市大丰区实验初级中学数学八年级下册期末经典模拟试题含解析_第2页
2024年江苏省盐城市大丰区实验初级中学数学八年级下册期末经典模拟试题含解析_第3页
2024年江苏省盐城市大丰区实验初级中学数学八年级下册期末经典模拟试题含解析_第4页
2024年江苏省盐城市大丰区实验初级中学数学八年级下册期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省盐城市大丰区实验初级中学数学八年级下册期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.不等式13x<1A.x<13 B.x>132.如图,∠CAB=∠DAB下列条件中不能使△ABC≌△ABD的是()A.∠C=∠D B.∠ABC=∠ABD C.AC=AD D.BC=BD3.测试5位学生“一分钟跳绳”成绩,得到5个各不相同的数据.在统计时,出现了一处错误:将最高成绩120个写成了180个。以下统计量不受影响的是()A.方差 B.标准差 C.平均数 D.中位数4.若二次根式在实数范围内有意义,则a的取值范围是()A.a>1 B.a≥1 C.a=1 D.a≤15.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. B.1 C. D.26.下列二次根式中,最简二次根式的是()A. B. C. D.7.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当时,如图1,测得AC=2,当时,如图2,则AC的值为()A.B.C.2D.8.若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10 B.7或10 C.4 D.7或49.一个多边形每个外角都是,则该多边形的边数是()A.4 B.5 C.6 D.710.在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A.k=-2,b≠3B.k=-2,b=3C.k≠-2,b≠3D.k≠-2,b=3二、填空题(每小题3分,共24分)11.已知关于x的分式方程有一个正数解,则k的取值范围为________.12.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.13.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为14.分解因式:m2nmn=_____。15.函数y=的自变量x的取值范围是_____.16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.18.在中,若的面积为1,则四边形的面积为______.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.20.(6分)如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:(1)求出h与d之间的函数关系式;(2)某人身高为196cm,一般情况下他的指距应是多少?21.(6分)如图,在网格图中,平移使点平移到点,每小格代表1个单位。(1)画出平移后的;(2)求的面积.22.(8分)如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.23.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.24.(8分)已知,,求.25.(10分)已知:等腰三角形的一个角,求其余两角与的度数.26.(10分)已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:DE=BF

参考答案一、选择题(每小题3分,共30分)1、D【解析】

两边同时乘以3,即可得到答案.【详解】解:13x<1,解得:故选择:D.【点睛】本题考查了解不等式,解题的关键是掌握不等式的解法.2、D【解析】

根据题目中的已知条件AB=AB,∠CAB=∠DAB,再结合题目中所给选项中的条件,利用全等三角形的判定定理进行分析即可.【详解】有条件AB=AB,∠CAB=∠DAB,A.再加上∠C=∠D可利用AAS可证明△ABC≌△ABD,故此选项不合题意;B.再加上条件∠ABC=∠ABD可利用AAS可证明△ABC≌△ABD,故此选项不合题意;C.再加上条件AC=AD可利用SAS可证明△ABC≌△ABD,故此选项不符合题意;D.再加上条件BC=BD不能证明△ABC≌△ABD,故此选项合题意;故选:D.3、D【解析】

根据方差,平均数,标准差和中位数的定义和计算方法可得答案.【详解】解:在方差和标准差的计算过程中都需要用到数据的平均数,C选项又是平均数,也就是说四个选项有三个跟平均数有关,而平均数的大小和每个数据都有关系,一旦某个数据改变了,平均数肯定会随之改变,而中位数是整组数据从小到大排列后取其中间的数(偶数个数据时取最中间2数的平均数)作为中位数,该事件中虽然最大数120变为180.但并不影响中间数的大小和位置,所以综上所述,不受影响的应该是中位数.故选:D.【点睛】本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握各统计量的定义和计算方法.4、B【解析】

根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5、B【解析】

先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.6、C【解析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.考点:最简二次根式.7、D【解析】

图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【详解】如图1,∵AB=BC=CD=DA,∠B=90°,

∴四边形ABCD是正方形,

连接AC,则AB2+BC2=AC2,

∴AB=BC===,

如图2,∠B=60°,连接AC,

∴△ABC为等边三角形,

∴AC=AB=BC=.

【点睛】本题考查正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.8、C【解析】

根据等腰三角形性质分为两种情况解答:当边长4cm为腰或者4cm为底时【详解】当4cm是等腰三角形的腰时,则底边长18-8=10cm,此时4,4,10不能组成三角形,应舍去;当4cm是等腰三角形的底时,则腰长为(18-4)÷2=7cm,此时4,7,7能组成三角形,所以此时腰长为7,底边长为4,故选C【点睛】本题考查等腰三角形的性质与三角形三边的关系,本题关键在于分情况计算出之后需要利用三角形等边关系判断9、B【解析】

用多边形的外角和360°除以72°即可.【详解】解:边数n=360°÷72°=1.故选:B.【点睛】本题考查了多边形的外角和等于360°,是基础题,比较简单.10、A【解析】试题解析:∵直线y=kx+1与直线y=-2x+b平行,

∴k=-2,b≠1.

故选A.二、填空题(每小题3分,共24分)11、k<6且k≠1【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.详解:,方程两边都乘以(x-1),得x=2(x-1)+k,解得x=6-k≠1,关于x的方程程有一个正数解,∴x=6-k>0,k<6,且k≠1,∴k的取值范围是k<6且k≠1.故答案为k<6且k≠1.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.12、1.【解析】解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.13、72°或144°【解析】

∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°14、n(m-)2【解析】

原式提取n,再利用完全平方公式分解即可.【详解】解:原式=n(m2-m+)=n(m-)2,

故答案为:n(m-)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、x≤且x≠0【解析】

根据题意得x≠0且1﹣2x≥0,所以且.故答案为且.16、【解析】【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.【详解】如图所示,过点A作AM⊥BC,垂足为M,∵四边形ABCD是平行四边形,∴AD//BC,∴∠B=180°-∠BAD=180°-120°=60°,∠DAE=∠AEB,∵AE平分∠BAD,∠BAD=120°,∴∠DAE=60°,∴∠AEB=60°,∴△ABE是等边三角形,∴BE=AB=2,∴BM=1,AM=,又∵CF//AE,∴四边形AECF是平行四边形,∵CE=BC-BE=3-2=1,∴S四边形AECF=CE•AM=,故答案为:.【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.17、小明【解析】

观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.【详解】解:根据图象可直接看出小明的成绩波动不大,

根据方差的意义知,波动越小,成绩越稳定,

故答案为:小明.【点睛】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18、1【解析】

S△AEF=1,按照同高时,面积与底成正比,逐次求解即可.【详解】S△AEF=1,DF=2AF,∴S△DEF=2,∵CE=2AE,∴S△DEC=6,∴S△ADC=9,∵BD=2DC,∴S△ABD=18,∵DF=2AF,∴S△BFD=12,∴S四边形BDEF=12+2=1.【点睛】本题考查的是图象面积的计算,主要依据同高时,面积与底成正比,逐次求解即可.三、解答题(共66分)19、(1)证明见解析,(2)证明见解析【解析】

(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA.(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.【详解】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.又∵E、F分别是边AB、CD的中点,∴BE=DF.∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)△BEC≌△DFA,∴CE=AF,∵E、F分别是边AB、CD的中点,∴AE=CF∴四边形AECF是平行四边形.【点睛】本题考查三角形全等的证明,矩形的性质和平行四边形的判定.20、(1)h=9d−20;(2)24cm.【解析】

(1)根据题意设h与d之间的函数关系式为:h=kd+b,利用待定系数法从表格中取两组数据,利用待定系数法,求得函数关系式;

(2)把h=196代入函数解析式即可求得.【详解】(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,.解得k=9,b=−20,即h=9d−20;(2)当h=196时,196=9d−20,解得d=24cm.【点睛】本题考查了一次函数的应用,根据题意找到对应数据是解题的关键.21、(1)详见解析;(2)【解析】

(1)根据题意知:A到D是相右平移6个方格,相下平移2个方格,即可画出C、B的对应点,连接即可;

(2)化为正方形减去3个三角形即可.【详解】(1)如图所示:△DEF即为所求;(2)【点睛】本题主要考查对平移的性质,作图-平移变换等知识点的理解和掌握,能根据题意正确画出图形是解此题的关键.22、(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.

(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为2cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+1.∵矩形ABCD的周长为2cm,∴2(AE+AE+1)=2.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.23、(1)证明见试题解析;(2)1.【解析】

试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论