使用H2O Driverless实现机器学习自动化戴尔基础设施上的人工智能_第1页
使用H2O Driverless实现机器学习自动化戴尔基础设施上的人工智能_第2页
使用H2O Driverless实现机器学习自动化戴尔基础设施上的人工智能_第3页
使用H2O Driverless实现机器学习自动化戴尔基础设施上的人工智能_第4页
使用H2O Driverless实现机器学习自动化戴尔基础设施上的人工智能_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAI

July2022H19252

WhitePaper

Abstract

Thistechnicalwhitepaperdiscussesthebenefitsofautomatedmachinelearningandthechallengesofnon-automatedmodeldevelopmentthatitovercomes.ThepaperpresentsanoverviewoftheH2ODriverlessAIproductfromH2O.ai,alongwithasolutionarchitectureforH2ODriverlessAIbuiltontheDellValidatedDesignforAI.Italsoprovidesseveralvalidatedusecasesusingthesolution.

DellTechnologiesSolutions

Copyright

Contents

PAGE

2

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAIWhitePaper

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAI

WhitePaper

PAGE

3

Theinformationinthispublicationisprovidedasis.DellInc.makesnorepresentationsorwarrantiesofanykindwithrespecttotheinformationinthispublication,andspecificallydisclaimsimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.

Use,copying,anddistributionofanysoftwaredescribedinthispublicationrequiresanapplicablesoftwarelicense.Copyright©2022DellInc.oritssubsidiaries.PublishedintheUSA07/22.WhitePaperH19252.

DellInc.believestheinformationinthisdocumentisaccurateasofitspublicationdate.Theinformationissubjecttochangewithoutnotice.

Contents

Introduction 5

Executivesummary 5

Documentpurpose 6

Audience 6

ThechallengesofAIadoption 6

Machinelearningchallenges 6

Talent 6

Time 6

Trust 7

OverviewofAutoMLandH2ODriverlessAI 7

AutoMLworkflowwithH2ODriverlessAI 7

Keyfeatures 10

SolutionarchitectureforAutoML 11

Kubernetes-baseddeploymentusingEnterpriseSteam 11

Dockerimage 12

Security 12

GPUsupport 12

Storageandnetworkconfiguration 13

Licensing 13

InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform 13

AutoMLonanoptimizedDellinfrastructure 15

SizingofAutoMLinfrastructure 16

ValidatedusecasesforAutoML 17

SentimentanalysiswithNLP 17

Imageclassification 20

DellTechnologiesservicesandsupport 21

Deploymentandsupport 21

TheDellTechnologiesCustomerSolutionsCenter 22

Conclusion 22

Wevalueyourfeedback 23

References 24

Contents

Introduction

PAGE

4

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAIWhitePaper

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAI

WhitePaper

PAGE

5

DellTechnologiesdocumentation 24

H2O.aidocumentation 24

NVIDIAdocumentation 24

AppendixA–Modelservingincnvrg.io 25

Introduction

Executivesummary

Artificialintelligence(AI)andmachinelearninghaverevolutionizedhoworganizationsareusingtheirdata.Automatedmachinelearning(AutoML)facilitatesandimprovestheend-to-enddatascienceprocess.Thisprocessincludeseverythingfrompreprocessingandcleaningthedata,selectingandengineeringappropriatefeatures,tuningandoptimizingthemodel,analyzingresults,explaininganddocumentingthemodel,andofcourse,deployingitintoproduction.

AutoMLacceleratesyourAIinitiativesbyprovidingmethodsandprocessestomakemachinelearningaccessibletobothexpertsandnonexpertsalike.OrganizationslookingtoapplymachinelearningquicklyandaccuratelywithoutemployinglargenumbersofdatascientistscanbenefitfromAutoMLcapabilities.Fororganizationsthathavedatascientists,AutoMLequipsandempowersthemtocreatemorerobustmodelswithaccuracy,speed,andtransparencytodeliverbetterperformanceandoutcomes.Inallcases,AutoMLhelpsorganizationsquicklydiscoverbusinessvaluehiddeninsidetheirdataandeasilyusethatdatatoaddresscomplexproblems.

H2ODriverlessAIisacomprehensiveautomatedmachinelearningproductthatusesAItodoAI,optimizingdatascienceworkflowstoincreaseboththequantityandqualityofdatascienceprojectsdeliveredtobusinessstakeholders.Itempowersdatascientiststoworkonprojectsfasterandmoreefficientlybyusingautomationtoaccomplishkeymachinelearningtasksinminutesorhours,notmonths.

H2ODriverlessAIprovidescapabilitiessuchas:

Exploratorydataanalysis(AutoViz)

Automaticfeatureengineering

Modelbuildingandvalidation

Automaticmodeldocumentation(AutoDoc)

Modelselectionanddeployment

Machinelearninginterpretability(MLI)

AutoMLdoesnotreplacemachinelearningoperations(MLOps).AutoMLfocusesonautomatingandacceleratingthemodeldevelopmentportionoftheMLpipeline,whileMLOpsprovidesanoveralllifecyclemanagementframeworkfordatapreparation,modeldevelopment,andcoding.AutoMLcomplementsMLOpsandcanrunsuccessfullyandefficientlywithvariousMLOpsframeworkssuchascnvrg.io.MLOpsprovidesanoveralllifecyclemanagementframeworkfordatapreparation,modeldevelopment,andcoding.

WithH2ODriverlessAIbring-your-ownrecipes,andtimeseriesandautomaticpipelinegenerationformodelscoring,H2ODriverlessAIprovidescompanieswithanextensibleandcustomizabledatascienceplatformthataddressestheneedsofvarioususecasesforeveryenterpriseineveryindustry.

ThechallengesofAIadoption

OverviewofAutoMLandH2ODriverlessAI

PAGE

6

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAIWhitePaper

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAI

WhitePaper

PAGE

7

Documentpurpose

Audience

ThiswhitepaperdiscussesAutoML,includingitsbenefitsandthechallengesofmoretraditionalmodeldevelopmentprocessesthatitovercomes.ThewhitepaperprovidesanoverviewoftheH2ODriverlessAIproduct,presentsasolutionarchitectureforH2ODriverlessAIbuiltontheDellValidatedDesignforAIwithVMware,anddescribesseveralvalidatedusecasesusingthesolution.Bydeployingthissolution,datascientistsandITprofessionalscanmovemachinelearningmodelsoutofthelabandintoproductionfasterandmoreeasily,thusbringingabetterreturnoninvestment(ROI)foranorganization’smachinelearninginvestments.

Thiswhitepaperisintendedfordatascientists,solutionarchitects,systemadministrators,andothersdevelopingandsupportingAIandmachinelearningapplications.

ThechallengesofAIadoption

Machinelearningchallenges

AsorganizationsstreamlinedecisionmakingandimprovecustomerexperienceswithAI,theyarerunningintothreecorechallenges:talent,time,andtrust.First,thereisnotenoughdatasciencetalenttobuildmodelsforeveryusecasebyhand.Evenwiththerightpeople,hand-codingtakestoomuchtimeandispronetoerrors.Then,thebusinessmustexplainandvalidateeachmodelsothatuserscantrustthedecisionsthatthemodelsupports.Thekeytobreakingthroughthetalent,time,andtrustbarriersistheautomationofadvancedmachinelearningtechniqueswithH2ODriverlessAI.

Talent

Datascientistsareinshortsupplyforallbutthelargesttechnologycompanies.WithH2ODriverlessAI,bothexpertandnovicedatascientistscanautomaticallybuildhighlyandtransparentaccuratemodelsquickly.H2ODriverlessAIisanaward-winningAutoMLproductthatembedsdatasciencebestpracticesfromtheworld’sleadingexpertsinengineeringanddatascience,includingtheworld’stopKaggleGrandmasters.Itusesauniquegeneticalgorithmthatdeterminesthebestcombinationoffeatures,models,andtuningparametersforeachusecase.Integratedbestpracticesandguardrailsensurethatmodelsdonotoverfitthedataandhelpwithothercommonissueswithwhichnovicedatascientistsmightneedassistance.H2ODriverlessAIenablescompaniestoundertakemoreusecaseswiththetalentthattheyalreadyhaveorcaneasilyfind.

Time

Reducingthetimetodevelopaccurate,production-readymodelsiscriticaltodeliveringAIatscale.H2ODriverlessAIautomatestime-consumingdatasciencetaskssuchasadvancedfeatureengineering,modelselection,hyperparametertuning,modelstacking,andcreationofaneasy-to-deploy,low-latencyscoringpipeline.Withhigh-performancecomputingusingbothCPUsandGPUs,H2ODriverlessAIcomparesthousandsofcombinationsanditerationstofindthebestmodelinminutesorhours.EvenexperienceddatascientistscanuseH2ODriverlessAItoexploremoretechniques,featurecombinations,andtuningparameters.H2ODriverlessAIalsostreamlinesmodeldeploymentthatincludeseverythingneededtorunthemodelinproduction,takingtheprocesstimefromexperimentationtoproductionfrommonthstodays.

Trust

FororganizationstoadoptAIatscale,datateams,businessleaders,andregulatorsmustbeabletoexplain,interpret,andtrustAIresults.H2ODriverlessAIdeliversindustry-leadingcapabilitiesforunderstanding,debugging,andsharingmodelresults,includinganextensivemachinelearninginterpretability(MLI)toolkit,fairnessdashboards,automatedmodeldocumentation,andreasoncodesforeachpredictionforservicerepresentativesandcustomers.WithH2ODriverlessAI,datateamshaveeverythingtheyneedtobuildtrustwithbusinessstakeholdersandregulators.

OverviewofAutoMLandH2ODriverlessAI

H2ODriverlessAIdeliversenterprise-ready,scalable,andsecureAutoMLthatcanrunonanycloudplatformorinon-premisesenvironments,usingthearchitecturethatthisdocumentdescribes.Withanon-premisesenvironment,youdonotneedtomoveyourdatatothecloud;youcanperformAutoMLsecurelywhereveryourdataresides.

H2ODriverlessAIenablesdatascientiststoworkonprojectsfasterandmoreefficientlybyusingautomationtoperformkeymachinelearningtasksinminutesorhours,notmonths.

H2ODriverlessAIincreasestheproductivityofdatapractitionersbyautomatingdataprocessing,featureengineering,modelbuilding,andhyperparametertuning.Itisastand-aloneplatformthatcanbeappliedforusecasessuchasNaturalLanguageProcessing(NLP),timeseriesforecasting,andimageclassifications.EnterprisescanchoosetodeployanMLOPsplatformtoenablecross-functionalcollaborationandtomanagetheend-to-endlifecycleoftheirAIapplications.Inthosecases,userscanintegrateH2ODriverlessAIwiththeirMLOpsplatformsuchascnvrg.io(see

InvokingH2ODriverlessAI

fromcnvrg.ioMLOpsPlatform

).

AutoMLworkflowwith

ThefollowingfigureshowsthestepsinatypicalAutoMLworkflowandhowH2ODriverlessAIenablesthesesteps:

H2ODriverlessAI

Figure1. AutoMLworkflowinH2ODriverlessAI

OverviewofAutoMLandH2ODriverlessAI

OverviewofAutoMLandH2ODriverlessAI

PAGE

10

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAIWhitePaper

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAI

WhitePaper

PAGE

9

Dataingestion—Theworkflowbeginswiththedata.Dataingestionconsistsofimportingandobtainingdatatoperformanalysisandtraining.

H2ODriverlessAIcaningestdatafromdatasetsinvariousformatsandfilesystemsincludingHadoopHDFS,AmazonS3compatiblestorage,AzureBlobStorage,GoogleBigQuery,GoogleCloudStorage,ApacheHive,JDBC,kdb+,MinIO,Snowflake,DataRecipe,DataRecipeFile,andNFS.ForlargerdatasetsthatarealreadyavailableinPowerScalestorage,H2ODriverlessAIprovidesdataconnectorsforaccessingandingestingdata.

Datapreparation—Whenthedataisdefined,thenextstepisdatapreparation.Thedatasetcanbedividedintotraining,test,andvalidationdatasets.Datascientistscaninteractivelymodelthedataforexploration,analysis,andvisualizationusingdataplotsandstatistics.AutoMLtoolsautomaticallyperformfeatureengineeringbyextractingfeatures(domain-specificattributes)fromrawdataanddatatransformationstosuiteMLalgorithms.

H2ODriverlessAIdeterminesthebestpipelineforadataset,includingautomaticdatatransformationandfeatureengineering.Datascientistscancontrolthenumberoforiginalfeaturesusedinmodelbuildingbyselectingorexcludingcolumnsinthedataset.H2ODriverlessAIusesauniquegeneticalgorithmtoautomaticallyfindnew,high-valuefeaturesandfeaturecombinationsforaspecificdatasetthatarevirtuallyimpossibletofindmanually.Theinterfaceincludesaneasy-to-readvariableimportancechartthatshowsthesignificanceoforiginalandnewlyengineeredfeatures.

Automaticvisualizations(AutoViz)inH2ODriverlessAIproviderobustexploratorydataanalysiscapabilitiesbyautomaticallyselectingdataplotsbasedonthemostrelevantdatastatisticsthatarebasedonthedatashape.Inspecificcases,AutoVizcansuggeststatisticaltransformationforsomedata.Experienceduserscanalsocustomizevisualizationstomeettheirneeds.AutoVizhelpsusersdiscovertrendsandissuessuchaslargenumbersofmissingvaluesorsignificantoutliersthatcanimpactmodelingresults.

Modelbuilding—Whenthedataisprepared,thenextstepismodelbuilding.AutomaticmodelbuildingincludesdatatransformationsandhyperparametertuningforthevariousmodelsavailableintheAutoMLproduct.Itautomaticallytrainsseveralin-builtmodelsandselectsthebestmodelorafinalensembleofmodelsbasedonuser-definedparameterssuchasmodelaccuracy.

AutomaticmodeldevelopmentinH2ODriverlessAIisaccomplishedbyrunningexperiments.H2ODriverlessAItrainsmultiplemodelsandincorporatesmodelhyperparametertuning,scoring,andensembling.Datascientistscanconfigureparameterssuchastheaccuracy,time,lossfunction,andinterpretabilityforaspecificexperiment.Thispreviewisautomaticallyupdatedwhenanyoftheexperiment’ssettingschange(includingtheknobs).Userscanalsorunmultiplediverseexperimentsthatprovideanoverviewofthedataset.Thisfeatureprovidesdatascientistswithrelevantinformationfordeterminingcomplexity,accuracy,size,andtimetradeoffswhenputtingmodelsintoproduction.H2ODriverlessAIusesageneticalgorithmthatincorporatesa‘survivalofthefittest’concepttodeterminethebestmodelforspecificdatasetandconfiguredoptionsautomatically.

Productization—Whentheexperimentiscompleted,youcanmakenewpredictionsandpushthemodelforproduction,eitherinthecloud,on-premises,orattheedge.

H2ODriverlessAIoffersconvenientoptionsfordeployingmachinelearningmodels,dependingonwheretheAIapplicationisrun:

Downloadthemodelandbuildyourowncontainer.

Downloadascoringpipeline.

Whentheexperiment(modelbuildingstep)iscomplete,H2ODriverlessAIcanbuildascoringpipelinethatcanbedeployedtoproduction.Ascoringpipelineisapackagedexperimentwhichincludesartifactsnecessaryformodeldeployment,includingmodelbinary,runtime,readme,example,scripts,andsoon.Youcandownloadtwodifferenttypesofscoringpipelines:

PythonScoringPipeline

MOJOScoringPipeline,whichisavailablewithbothJavaandC++backends

Thedecisionaboutwhichtypeofpipelinetousecomesfromvariousfactorsincludingthetypeofmodelbeingbuiltintheexperiment,usecase,latencyrequirements,andsoon.Ingeneral,MOJOScoringPipelinesarefasterbutmightrequireadditionalsetup,whilePythonScoringPipelinesarebuiltintoa

.whlfile,whicheasilyinstallableinPython.H2ODriverlessAIalsoallowsyoutovisualizethescoringpipelineasadirectionalgraph,asshowninthefollowingfigure:

Figure2. VisualizationofH2ODriverlessAIscoringpipeline

Deploythemodeldirectlyinacloudservice.

ConfigurethemodeltorunonalocalRESTserverwithacoupleofclicks.

Keyfeatures

TheH2ODriverlessAIplatformenablesthefollowingelementsofAutoML:

SupportforNVIDIAGPUs—AImodelsareexplodingincomplexity,andautomateddatatransformationanddeeplearningrequiremassivecomputepowerandscalability.H2ODriverlessAIsupportsthelatestNVIDIAGPUstoacceleratefeatureengineeringandtrainingofneuralnetworks.NVIDIA’sMulti-InstanceGPU(MIG)featurecanbeusedtopartitiontheGPUs,increaseoverallGPUutilization,andsupportseveraltypesofusecasesanddeploymentswithguaranteedqualityofservice.

Integratedcatalogofrecipesandmodels—H2ODriverlessAIoffersarichcatalogofAImodels,transformers,andscorersforautomaticfeatureengineeringandmodelbuilding.

Machinelearninganddeeplearning—H2ODriverlessAIincludesleadingopen-sourcetransformers,embeddings,andframeworksformachinelearninganddeeplearningtechniquestohandlevariousdatascienceusecases.WithH2ODriverlessAI,youcanautomaticallybuildmodelsforIndependentandIdenticallyDistributed(IID)data,images,text,andmore.Forexample,H2ODriverlessAIincludesTensorFlowCNNsforimagemodelingandNLPlibrariesfromPyTorch,includingBERTandotherstate-of-the-arttechniques.

MachineLearningInterpretability(MLI)—H2ODriverlessAIprovidesrobustexplainabilityandfairnessanalysisformachinelearningmodelsandhelpsexploreanddemystifymodelingresults.Itincludesstraightforwarddisparateimpactanalysistotestformodelbiasandprovidesreasoncodesforeveryprediction.Maximumtransparencyandminimaldisparateimpactarecrucialdifferentiatorsifyoumustjustifyyourmodelstobusinessstakeholdersandregulators.

Automaticmodeldocumentation(AutoDoc)—Datascientistsmustdocumentthedata,algorithms,andprocessesusedtocreatemachinelearningmodelsforbusinessusersandregulators.H2ODriverlessAIautomaticmodeldocumentationrelievesyoufromthetime-consumingtaskofrecordingandsummarizingyourworkflowwhilebuildingmachinelearningmodels.Thedocumentationincludesdetailsaboutthedataused,thevalidationschemaselected,modelandfeaturetuning,MLI,andthefinalmodelcreated.AutoDocsavesdatascientiststimeandremovestediousworksothattheycanspendmoretimepracticingdatascienceanddrivemorevalueforthebusiness.

Bring-Your-OwnRecipes—ExperienceddatascientistscaneasilyextendH2ODriverlessAIwithcustomizationsthatrunwithintheH2ODriverlessAIplatform,includingdatapreparation,models,transformers,andscorers.Thesecustomizations,calledrecipes,arePythoncodesnippetsthatcanbeuploadedintoH2ODriverlessAIatruntime,likeplugins.H2ODriverlessAIcanconsumerecipeswithmultipleconvenientoptions:uploadingfromalocalmachine,consumingfrompublishedcodeinasourcecontrolhub(Bitbucket)andlinkingtoareciperawcode.YoucanchecktheGitHubrepositoryfortheavailableandoptimizedH2O.airecipes.Duringtrainingofasupervisedmachinelearningmodelingpipeline,H2ODriverlessAIcanusetheserecipesasbuildingblockswithorinsteadofallintegratedcodepieces.Theyareusedintheautomaticmachinelearningoptimizationprocess,eventuallycreatingthewinningmodel.Datascienceteamscandevelopcustomizationsspecifictotheiruse-cases,industry,orbusiness.

SolutionarchitectureforAutoML

SolutionarchitectureforAutoML

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAI

WhitePaper

PAGE

11

PAGE

12

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAIWhitePaper

SolutionarchitectureforAutoML

H2ODriverlessAIprovidesanenterprise-readyAutoMLproductfordatascientistsandmachinelearningengineerstodevelopandpublishAIapplications.ItcanbedeployedeitherinKubernetesaspodsorasastand-alonecontainer.

Kubernetes-baseddeploymentusingEnterpriseSteam

EnterpriseSteamfromH2O.aiisaserviceforsecurelymanaginganddeployinginfrastructureforH2ODriverlessAIonKubernetes.EnterpriseSteamofferssecurity,accesscontrol,resourcecontrol,andresourcemonitoringoutoftheboxsothatorganizationscanfocusonthecoreoftheirdatasciencepractice.Itenablessecure,streamlinedadoptionofH2ODriverlessAIandotherH2O.aiproductsthatcomplieswithcompanypolicies.

Fordatascientists,EnterpriseSteamprovidesPython,R,andwebclientsformanagingclustersandinstances.ItallowsdatascientiststopracticedatascienceintheirownH2ODriverlessAIinstance.Foradministrators,EnterpriseSteamcontrolswhichproductversionsandcomputeresourcesareavailable.

EnterprisesteamisasinglepodthatisdeployedusingHelm.WhenEnterpriseSteamisdeployed,youcanlaunchanewH2ODriverlessAIinstanceandmanageexistinginstances.

Youcanuseeachinstanceformodelbuildingforaspecificproject.Inthefollowingfigure,weshowthreeinstancesofH2ODriverlessAIdeployedforautomatedmodelbuildingforthreedifferentusecases:NLP,timeseriesforecasting,andimageclassification.

Figure3. SolutionarchitectureforKubernetes-basedDriverlessAIdeployment

Datasetsaremadeavailabletotheinstanceeitherbydownloadingthemintothecontainerorthroughseveralofthedataconnectors,asexplainedinthefollowingsections.Datavisualization,featureengineering,andmodeldevelopmentareperformed

onthisinstance.H2ODriverlessAIsupportsNVIDIAGPUaccelerationandsomeusecasessuchasimageclassificationcanbenefitfromGPUresources.Fortheseusecases,GPUsareconfiguredandmadeavailabletothecontainer.

Afterthemodelistrained,youcandownloadthePythonorMOJOScoringPipelineandbuildaDockercontainer.YoucandeploythisDockercontaineroutsideoftheKubernetesenvironmentoraspodexposedasaKubernetesservice.

H2ODriverlessAIcanalsobedeployedasastand-alonecontainereitheronbaremetalorvirtualmachines.Thisdeploymentoptionisoutsidethescopeofthisvalidateddesign.Seethe

H2ODriverlessAIdocumentation

formoreinformation.

Dockerimage

Security

GPUsupport

H2ODriverlessAIDockerimagesareavailablethroughEnterpriseSteam.TheDockerimagescomewithalltherequiredlibrariesandsoftwareinstalled,includinglibrariesfortheGPU.

EnterpriseSteamprovidesaccesscontrol.Userscanbecreatedwithdifferentroles,andresourcescanbeallocatedtoeachuser.H2ODriverlessAIsupportsclientcertificate,LDAP,andotherauthenticationoptions.TheseoptionscanbeconfiguredbyspecifyingtheenvironmentvariableswhenstartingtheH2ODriverlessAIDockerimageorbyspecifyingtheappropriateoptionsintheconfigurationfile.Seethe

H2ODriverlessAI

documentation

formoreinformation.

H2ODriverlessAIcanrunonmachineswithonlyCPUsormachineswithCPUsandGPUs.H2ODriverlessAIsupportsNVIDIAA100andA30GPUs.OnlyoneGPUissupportedperinstance.ImageandNLPusecasesinH2ODriverlessAIbenefitsignificantlyfromGPUusage.ModelbuildingalgorithmssuchasXGBoost(GBM/DART/RF/GLM),LightGBM(GBM/DART/RF),PyTorch(BERTmodels),andTensorFlow(CNN/BiGRU/ImageNet)modelsuseGPU.

NVIDIA’sMulti-InstanceGPU(MIG)featurecanbeusedtopartitiontheGPUs,increaseoverallGPUutilization,andsupportseveraltypesofusecasesanddeploymentswithguaranteedqualityofservice.FormoreinformationaboutGPUpartitioningrecommendations,seetothe

NVIDIAMulti-InstanceGPUandNVIDIATechnicalBrief.

ImageandNLPusecasesinH2ODriverlessAIbenefitsignificantlyfromGPUusage.ModelbuildingalgorithmssuchasXGBoost(GBM/DART/RF/GLM),LightGBM(GBM/DART/RF),PyTorch(BERTmodels),andTensorFlow(CNN/BiGRU/ImageNet)modelsuseGPU.

InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform

InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAI

WhitePaper

PAGE

13

PAGE

14

AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure

DellValidatedDesignforAIWhitePaper

Storageandnetworkconfiguration

Licensing

H2ODriverlessAIrequiresnospecialnetworkconsiderations.TheKubernetes-baseddeploymentusesingresscontrolandloadbalancerstogovernaccesstothedeployment.

H2ODriverlessAIusespersistentvolumestosavetherequireddataandtoconnecttoexternaldatasourcessuchasNFS.

H2ODriverlessAIislicensedperuser.EachusercandeployaninstanceofH2ODriverlessAI.H2ODriverlessAImanagestheGPUsinthedeployment.Itensuresthatdifferentexperimentsbydifferentuserscanrunsafelysimultaneouslyanddonotinterferewitheachother.NospeciallicensingisrequiredforGPUsupport.

EnterpriseSteamislicensedseparately.UsersrequireonelicenseperEnterpriseSteamdeployment.

InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform

Asshownin

Figure1,

AutoMLenablesautomaticmodelbuilding.However,itdoesnotofferthecompletelifecycleforamachinelearningapplication.Also,AutoMLautomatedmodelbuildingdoesnotsupportallscenariosandusecases.Forexample,AutoMLsupportstrainingonlyforsuperviseddataandunsupervisedlearning.Itdoesnotsupportreinforcementlearning.

ForbuildingmodelsforsuchcomplexusecasesandtomaintainacompletelifecycleofAImodels,enterprisesrelyonanMLOPsplatform.MLOpsisadefinedprocessandlifecycleformachinelearningdata,models,andcoding.TheMLOpslifecyclebeginswithdataextractionandpreparationasthedatasetismassagedintoastructurethatcaneffectivelyfeedthemodel.MLOpsplatformsprovideconstantmonitoringtoensurethattheprocessisrunningsmoothly.MLOpsenablesdatascientiststobuildcomplexpipelinesthatallowforcontinuouslearning.Automaticretrainingcanbeimplementedtohelpadjustthedeployedprocessandimprovetheaccuracywitheachiteration.

EnterprisesthathavemultipleongoingAIprojectstosupportprogresstowardstheirbusinessintelligencegoalscanusebothMLOpsandAutoMLplatformstotheirrespectivestrengths.DellTechnologieshasworkedcloselywithcnvrg.iotodeliverMLOpsforAIandmachinelearningadoptersthroughajointlyengineeredandtestedsolutiontohelporganizationscapitalizeonthebenefitsofMLOpsformachinelearningandAIworkloads.TheOptimizeMachineLearningThroughMLOpswithDellTechnologiesandcnvrg.io

WhitePaper

and

DesignGuide

provideguidanceforarchitecting,deploying,andoperatingMLOps

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论