![2023-2024学年山东省济南市外国语学校高考仿真卷数学试题含解析_第1页](http://file4.renrendoc.com/view4/M00/38/17/wKhkGGYbJrKABOxGAAGyrGZjGFc005.jpg)
![2023-2024学年山东省济南市外国语学校高考仿真卷数学试题含解析_第2页](http://file4.renrendoc.com/view4/M00/38/17/wKhkGGYbJrKABOxGAAGyrGZjGFc0052.jpg)
![2023-2024学年山东省济南市外国语学校高考仿真卷数学试题含解析_第3页](http://file4.renrendoc.com/view4/M00/38/17/wKhkGGYbJrKABOxGAAGyrGZjGFc0053.jpg)
![2023-2024学年山东省济南市外国语学校高考仿真卷数学试题含解析_第4页](http://file4.renrendoc.com/view4/M00/38/17/wKhkGGYbJrKABOxGAAGyrGZjGFc0054.jpg)
![2023-2024学年山东省济南市外国语学校高考仿真卷数学试题含解析_第5页](http://file4.renrendoc.com/view4/M00/38/17/wKhkGGYbJrKABOxGAAGyrGZjGFc0055.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省济南市外国语学校高考仿真卷数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元2.已知复数满足,则()A. B. C. D.3.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.4.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元5.设复数满足,则()A.1 B.-1 C. D.6.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为()A. B. C. D.7.展开项中的常数项为A.1 B.11 C.-19 D.518.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.9.已知,,,则()A. B.C. D.10.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A. B. C. D.11.定义运算,则函数的图象是().A. B.C. D.12.函数图象的大致形状是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在各项均为正数的等比数列中,,且,成等差数列,则___________.14.已知中,点是边的中点,的面积为,则线段的取值范围是__________.15.展开式中的系数为________.16.若满足约束条件,则的最小值是_________,最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.18.(12分)在四棱柱中,底面为正方形,,平面.(1)证明:平面;(2)若,求二面角的余弦值.19.(12分)已知在中,内角所对的边分别为,若,,且.(1)求的值;(2)求的面积.20.(12分)已知函数,其中.(1)讨论函数的零点个数;(2)求证:.21.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:22.(10分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.2、A【解析】
由复数的运算法则计算.【详解】因为,所以故选:A.【点睛】本题考查复数的运算.属于简单题.3、A【解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.4、D【解析】
用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.5、B【解析】
利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.6、D【解析】
连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,,在等腰中,取的中点为,连接,则,,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.7、B【解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.8、B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.9、C【解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.10、B【解析】
先利用向量数量积和三角恒等变换求出,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.【详解】解:令,解得对称轴,,又函数在区间恰有个极值点,只需解得.故选:.【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或的形式;(2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.11、A【解析】
由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.12、B【解析】
判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,,可排除D;故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可.【详解】因为,成等差数列,所以,由等比数列通项公式得,,所以,解得或,因为,所以,所以等比数列的通项公式为.故答案为:【点睛】本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题.14、【解析】
设,利用正弦定理,根据,得到①,再利用余弦定理得②,①②平方相加得:,转化为有解问题求解.【详解】设,所以,即①由余弦定理得,即②,①②平方相加得:,即,令,设,在上有解,所以,解得,即,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.15、30【解析】
先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.16、06【解析】
作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解.【详解】(1)∵是等比数列,且成等差数列∴,即∴,解得:或∵,∴∵∴(2)∵∴【点睛】本题考查等比数列的通项公式,考查并项求和法及等差数列的项和公式.本题求数列通项公式所用方法为基本量法,求和是用并项求和法.数列的求和除公式法外,还有错位相关法、裂项相消法、分组(并项)求和法等等.18、(1)详见解析;(2).【解析】
(1)连接,设,可证得四边形为平行四边形,由此得到,根据线面平行判定定理可证得结论;(2)以为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果.【详解】(1)连接,设,连接,在四棱柱中,分别为的中点,,四边形为平行四边形,,平面,平面,平面.(2)以为原点,所在直线分别为轴建立空间直角坐标系.设,四边形为正方形,,,则,,,,,,,设为平面的法向量,为平面的法向量,由得:,令,则,,由得:,令,则,,,,,二面角为锐二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面平行关系的证明、空间向量法求解二面角的问题;关键是能够熟练掌握二面角的向量求法,易错点是求得法向量夹角余弦值后,未根据图形判断二面角为锐二面角还是钝二面角,造成余弦值符号出现错误.19、(1);(2)【解析】
(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,∵,∴,∴,化简可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.20、(1)时,有一个零点;当且时,有两个零点;(2)见解析【解析】
(1)利用的导函数,求得的最大值的表达式,对进行分类讨论,由此判断出的零点的个数.(2)由,得到和,构造函数,利用导数证得,即有,从而证得,即.【详解】(1),∴当时,,当时,在上递增,在上递减,.令在上递减,在上递增,,当且仅当时取等号.①时,有一个零点;②时,,此时有两个零点;③时,,令在上递增,,此时有两个零点;综上:时,有一个零点;当且时,有两个零点;(2)由(1)可知:,令在上递增,.【点睛】本小题主要考查利用导数研究函数的零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21、(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】
(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望.【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新《行政处罚法》知识学习考试题库500题(含答案)
- 2025年福建省职教高考《语文》考前冲刺模拟试题库(附答案)
- 2025年桂林生命与健康职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 10kV配电站房工程的成本控制与优化策略
- 国标柴油购销合同
- 居间合同委托书范文年
- 烟草产品购销合同
- 注册规划师聘用合同
- 土地平整工程承包合同
- 正规设备买卖交易合同
- 2024年北京东城社区工作者招聘笔试真题
- 一年级数学个位数加减法口算练习题大全(连加法-连减法-连加减法直接打印版)
- 五年级上册数学试题试卷(8篇)
- 五年级上册小数递等式计算200道及答案
- 冀教版五年级下册数学全册教学课件
- T-SDASTC 006-2023 眩晕病中西医结合基层诊疗指南
- 安全个人承诺书范文个人承诺书范文
- 远视储备培训课件
- 岭南膏方规范
- 【可行性报告】2023年虚拟演播室制作设备相关行业可行性分析报告
- 世界老年人跌倒的预防和管理指南解读及跌倒应急处理-
评论
0/150
提交评论