




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省绵阳市涪城区九年级第一学期期中数学试
卷
一.选择题:本大题共12个小题,每小题3分,共36分。在每个小题给出的四个选项中,
只有一个是符合题目要求的。
1-在一元二次方程-f-4x+l=0中,二次项系数和一次项系数分别是()
A.-1,4B.-1,-4C.1,4D.1,-4
2.用配方法解方程/+法-5=0时,下列配方结果正确的是()
A.(x-1)2=5B.(x+1)2=6C.(x+1)2=7D.(x-1)2=6
3.下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是()
笛卡尔心形线
।斐波那契螺旋线
4.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大
喷水高度为3米,此时喷水水平距离为■米,在如图所示的坐标系中,这支喷泉的函数
关系式是()
B
14
C.y=-8(x方)+3D.y=-8(x+y)+3
5.下列关于x的一元二次方程中有两个相等的实数根的是()
A.(X-3)2=4B.^=xC.x2+2x+l=0D.x2-16=0
6.某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率先第
3年的销售量为y台,则y关于x的函数解析式为()
A.y=5000(l+2x)B.>-=5000(1+x)2
C.5000+21-D.y=5000x2
7.若将一个二次函数的图象向下平移2个单位,再向左平移3个单位,所得函数解析式是
y=》,那么这个函数解析式为()
A.y=—(x+3)2-2B.y=—(x+3)2+2
22
C.y=—(x-3)2-2D.y=—(x-3)2+2
22
8.如图,在△ABC中,AB=AC,NA=30°,D,E分别在AB、AC上,-1,且
△BED是等腰直角三角形,其中N8E3=90°,则AD的值是()
A.1B.百C.V3-1D.
9.已知关于x的一元二次方程/+2%=4x有两个不相等的实数根,则m的取值范围是
()
A,机22B.机<2C.m》0D.m<0
10.定义新运算:对于两个不相等的实数a,b,我们规定符号,次状{a,6}表示a,6中的较
大值,如:max{1,3}=3,因此-3)=-1;按照这个规定,若-x]
x~2x-l;则x的值是()
2
A.-1B.-1或2+遥C.2+75D.1或2-代
11.如图,将RtzMBC绕着直角顶点A顺时针旋转90°后得到△A"C,贝叱CC'A的
度数为()
B
A.30°B.45°C.60°D.90°
12.对于一个函数,如果它的自变量x与函数值满足:当-IWxWl时,-IWyWl,则称
这个函数为"闭函数".例如:y=x,y=-x均是“闭函数".己知y=ax1+bx+c
0)是“闭函数”且抛物线经过点A(l,-1)和点8(-1,1),则。的取值范围是()
A.弓<a4/B.卷<a<0或0<a<£
C.-IWaWlD.-1W“<O或OVaWl
二.填空题(共6小题,每小题3分,满分18分)
13.若y=(n+2)xn~切x+1是关于自变量x的二次函数,则〃=.
14.已知点A(3a-9,2-a)关于原点对称的点为A',点4关于x轴对称的点为4",
点A"在第四象限,那么a的取值范围是.
15.如图,把RtAABC绕点A逆时针旋转40°,得到RtAAB'C,点C'恰好落在边AB
上,连接29,则/C'B'B的度数是.
16.如图,正方形EFG4的顶点在边长为2的正方形的边上.若设A£=x,正方形EFGH
的面积为y,则y与x的函数关系为
17.如图,点P是等边三角形ABC内的一点,且PA=娓,PB=®,PC=2衣,则N
图象的一部分,其对称轴是直线x=-l,且过点(-3,
0),有以下结论:①必c>0;②4a+2b+c>0;③a-bW机(帅+b)(机为任意实数);
④若方程a(x+3)(1-x)=-1的两根为xi,X2,且xi<X2,则-3<XI<X2<1,其中
三.解答题(共6小题,满分46分)
19.在下面的网格(每个小正方形的边长为1)中按要求画出图形并解答:
(1)先将AABC向下平移5格得△ABC”再将aABC以点O为旋转中心,沿顺时针
方向旋转90°得282c2;
(2)请在图中以点O为坐标原点,建立适当直角坐标系,写出此时点4、&、C2的坐
20.如图,已知抛物线y=-9+(m-1)x+机的对称轴为x=l,请你解答下列问题:
(I)求〃1的值;
(II)求出抛物线与X轴的交点;
(III)当y随X的增大而减小时X的取值范围是
(IV)当y<0时,x的取值范围是.
21.某公司的商品进价每件60元,售价每件130元,为了支持“抗新冠肺炎”,每销售一
件捐款4元.且未来30天,该商品将开展每天降价1元”的促销活动,即从第一天起每
天的单价均比前一天降1元,市场调查发现,设第x天(1WXW30且x为整数)的销量
为>件,y与x满足一次函数关系,其对应数据如表:
X(天)......1357......
y(件)......35455565......
(1)直接写出y与x的函数关系式;
(2)在这30天内,哪一天去掉捐款后的利润是6235元?
(3)设第x天去掉捐款后的利润为W元,试求出W与x之间的函数关系式,并求出哪
一天的利润最大,最大利润是多少元?
22.如图,长为10,"的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8%如果梯子的
底端滑动1相,求梯子顶端下滑的区间.(精确到01米)
区&
23.某学校活动小组探究了如下问题,清你都助他们完成解答过程:
(1)操作发现:如图1,ZVIBC中,AB=AC,/BAC=90°,。为边8C上的一点,连
接AD,作/尸4。=90。,并截取连接。尸.求证:BD2+CD2=D/^;
(2)灵活运用:如图2,在四边形ABC。中,AC,8。是对角线,AABC是等边三角形,
ZADC=30°,>4D=3,BD=5,求CD的长.
24.如图,在顶点为P的抛物线〉=4(乂-〃)2+&(4/0)的对称轴/上取点4",k+上),
4a
过4作BC,/交抛物线于8、C两点(8在C的左侧),点4'和点A关于点P对称;
过A'作直线机,/,又分别过点8、C作BE,机和CD,”?,垂足为E、D.在这里我们
把点A叫此抛物线的焦点,8c叫此抛物线的直径,矩形BCOE叫此抛物线的焦点矩形.
(1)直接写出抛物线y=/的焦点坐标以及直径的长.
(2)求抛物线y=J(X-3)2+2的焦点坐标以及直径的长.
(3)已知抛物线y=a(x-/7)2+k50)的直径为得,求a的值.
(4)①已知抛物线y=ar+6x+c(”#0)的焦点矩形的面积为2,求”的值.
②直接写出抛物线(x-3)2+2的焦点矩形与抛物线丫=/-2g+/+1有两个公共
参考答案
一.选择题:本大题共12个小题,每小题3分,共36分。在每个小题给出的四个选项中,
只有一个是符合题目要求的。
1.在一元二次方程-4x+l=0中,二次项系数和一次项系数分别是()
A.-1,4B.-1,-4C.1,4D.1,-4
【分析】分别根据一元二次方程的一般形式中二次项系数和一次项系数的定义解答即
可.
解:一元二次方程-必-4+1=0中,二次项系数和一次项系数分别是-1,-4.
故选:B.
【点评】本题考查了一元二次方程的一般形式是:以2+bx+c=O(«,b,c是常数且a#
0).在一般形式中以2叫二次项,打叫一次项,c是常数项.其中a,b,c分别叫二次
项系数,一次项系数,常数项.
2.用配方法解方程必+2》-5=0时,下列配方结果正确的是()
A.(x-1)2=5B.(x+1)2=6C.(x+1)2=7D.(x-1)2—6
【分析】此题实际上是把左边配成完全平方式,右边化为常数.
解:移项,得
配方,得
X2+2X+1=5+1,
即(x+1)2=6,
故选:B.
【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:
(1)形如N+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加
上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.
(2)形如加+云+。=0型,方程两边同时除以二次项系数,即化成V+px+qnO,然后配
方.
3.下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是()
【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断后利用排除法求解.
解:A、是中心对称图形,但不是轴对称图形,故本选项符合题意;
8、是轴对称图形,不是中心对称图形,故本选项不合题意;
C、既是轴对称图形,也是中心对称图形,故本选项不合题意;
£>、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:A.
【点评】本题考查了中心对称图形与轴对称图形,轴对称图形的关键是寻找对称轴,图
形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原
图重合.
4.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大
喷水高度为3米,此时喷水水平距离为■米,在如图所示的坐标系中,这支喷泉的函数
关系式是()
[1
A-了=-6n)+3B-y=3(x-y)+1
]2]2
c.y=-8(x»)+3D.y=-8(x+y)+3
【分析】根据二次函数的图象性质进行解答即可.
解:根据图象知:
抛物线开口向下,顶点(/,3),
答案B。不符合.
把点(0,1)代入答案A、C检验,该点满足C.
故选:C.
【点评】在明确抛物线顶点的情况下,设抛物线顶点式,用抛物线经过的另外一点检验
或者求“值.
5.下列关于x的一元二次方程中有两个相等的实数根的是()
A.(x-3)2=4B.x2=xC.x2+2x+l=0D.x2-16=0
【分析】通过解方程求得方程的解或根据根的判别式△=加-4ac的值的符号判断即可.
解:A、(x-3)2—4,
.,.x-3=±2,
••X1-1rX2=5,
故本选项不符合题意;
B、\'x2—x,
.'.x2-x=0,
'.x(x-1)=0,
;.X1=O,X2—\,
故本选项不符合题意;
C、△=22-4X1X1=0,该方程有两个相等实数根.故本选项符合题意;
D、A=O2-4X1X(-16)=64>0,该方程有两个不相等的实数根.故本选项不符合
题意;
故选:C.
【点评】此题主要考查了根的判别式.总结:一元二次方程根的情况与判别式△的关
系:(1)△>()=方程有两个不相等的实数根;(2)A=0o方程有两个相等的实数根;
(3)AVOo方程没有实数根.
6.某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,第
3年的销售量为y台,则y关于x的函数解析式为()
A.y=5000(l+2x)B.y=5000(1+x)2
C.y=5000+2%D.y=5000^
【分析】首先表示出第二年的销售量为5000(1+x),然后表示出第三年的销售量为5000
(1+x)2,从而确定答案.
解:设每年的销售量比上一年增加相同的百分率x,
根据题意得:y=5000(1+x)2,
故选:B.
【点评】本题考查了根据实际问题列二次函数的关系式,解题的关键是分别表示出第二
年和第三年的销售量,难度中等.
7.若将一个二次函数的图象向下平移2个单位,再向左平移3个单位,所得函数解析式是
y=#,那么这个函数解析式为()
A.y=—(x+3)2-2B.y=—(x+3)2+2
22
C.y=—(x-3)2-2D.y=—(x-3)2+2
22
【分析】按照“左加右减,上加下减”的规律.
解:yg(x-3)2+2向下平移2个单位,再向左平移3个单位得尸家.
故选:D.
【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.
8.如图,在△ABC中,AB=AC,NA=30°,D、E分别在A3、AC上,CE=«-I,且
△BE。是等腰直角三角形,其中N8E£>=90°,则A。的值是()
A.1B.73C.V3-1D.
【分析】根据等腰三角形的性质和三角形内角和定理得:NA8C=NC=75°,BC=
BE,作辅助线,构建三角形全等,证明丝△EG。(A45),得EG=BH,EH=
DG,根据直角三角形30度的角性质得AO=2OG,可得出答案.
解:在△ABC中,AB=AC,NA=30°,
.../ABC=/C=75°,
AD5£是等腰直角三角形,
:.NDBE=45°,
:.ZCBE=3QQ,
AZBEC=15°=ZC,
:・BC=BE,
过。作。GJ_AC于G,过8作3H_LAC于H,
VZBED=90°,
JZBEH+ZDEG=ZBEH+ZEBH=90°,
:.ZDEG=ZEBH,
♦;BE=DE,/BHE=NEGD=90°,
:・4BHEmAEGD(A4S),
:・EG=BH,EH=DG,
为△ADG中,NA=30°,
:.AD=2DGt
•:BC=BE,BHA.CEf
:・CE=2EH=2DG=AD=M-1,
故选:C.
【点评】此题主要考查了同角的余角相等,全等三角形的判定和性质,直角三角形30度
角的性质,等腰三角形的性质和判定,等腰直角三角形的性质等知识,解本题的关键是
证明四△EGD.
9.已知关于x的一元二次方程/+2m=4x有两个不相等的实数根,则m的取值范围是
()
A.B.m<2C.m20D.m<0
【分析】先将方程化为一般形式,再根据根的情况得出△=(-4)2-4XlX2/n>0,解
之可得答案.
解:'.'x1+2m=4x,
Ax2-4x+2m=0,
根据题意,得:△=(-4)2-4X1X2«I>0,
解得m<2,
故选:B.
【点评】本题主要考查根的判别式,一元二次方程加+fov+c=O(4云0)的根与△=〃-
4ac有如下关系:
①当△>()时,方程有两个不相等的两个实数根;
②当A=0时,方程有两个相等的两个实数根;
③当A<0时,方程无实数根.
上面的结论反过来也成立.
10.定义新运算:对于两个不相等的实数a,b,我们规定符号加依他,的表示“,6中的较
大值,如:,”"{1,3}=3,因此n7ax{-1,-3}=-l;按照这个规定,若/wax{x,-x}
2
=x-2x-l,则x的值是()
2
A.-1B.-1或2+收C.2+V5D.1或2-依
【分析】根据新定义分x>0和x<0列出方程,再分别求解可得.
解:若x>-x,即x>0,则x=x'2x-l
解得x=2+F(负值舍去);
2
若x<-x,即x<0,则-x=*-2xT,解得x=_](正值舍去);
2
故选:B.
【点评】本题主要考查了新定义和解一元二次方程的能力,熟练掌握解一元二次方程的
几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合
适、简便的方法是解题的关键.
11.如图,将Rt^ABC绕着直角顶点4顺时针旋转90°后得到△A8'C,则NCC'A的
度数为()
B
A.30°B.45°C.60°D.90°
【分析】根据旋转的性质可得到AC=AC',从而不难求得/CC'A的度数.
解:由题意可得,AC=AC,NC48=90°,则NCC'A=45°,故选艮
【点评】此题主要考查等腰直角三角形的性质和旋转的性质,得出AC=AC是关键.
【链接】旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段
的夹角等于旋转角;③旋转前、后的图形全等.
12.对于一个函数,如果它的自变量x与函数值满足:当-IWxWl时,-IWyWl,则称
这个函数为"闭函数".例如:y=x,y=-x均是"闭函数".已知旷=加+法+。(“W
0)是“闭函数”且抛物线经过点A(l,-1)和点夙-1,1),则〃的取值范围是()
A.B.总<a<0或0<a<£
C.-IWaWlD.-lWa<0或0<aWl
【分析】把A、B的坐标代入函数解析式,即可求出a+c=O,b=-l,代入得出抛物线
表达式为y=o^-x-a(。20),得出对称轴为x=(,再进行判断即可.
解::抛物线y=ax1+bx+c(aWO)经过点A(1,-1)和点8(-1,1),
/.a+h+c=-1®a-/?+<?=1②
①+②得:〃+c=0即。与c互为相反数,
①"②得:b=-1;
所以抛物线表达式为丁=加-x-a(aWO),
...对称轴为
2a
当。<0时,抛物线开口向下,且*=上<0,
2a
;抛物线y—a^--x-a(tz^O)经过点A(1,-1)和点B(-1,1),
画图可知,当时符合题意,此时-
2a2
同理,当“>0时,抛物线开口向上,且尤=[->0,
综上所述:a的取值范围是-"^■Wa<0或
故选:B.
【点评】本题考查了二次函数的图象和性质和二次函数图象上点的坐标特征,能灵活运
用性质和已知函数的新定义求解是解此题的关键.
二.填空题(共6小题,每小题3分,满分18分)
13.若丫=6+2h"-2皿+1是关于自变量%的二次函数,则〃=2.
【分析】根据二次函数的定义可得〃2-2=2且"+2W0,求解即可.
解:•••y=(n+2)xn\mx+l是关于自变量x的二次函数,
n2-2=2且〃+2W0,
解得n=2,
故答案为:2.
【点评】本题考查了二次函数的定义,熟练掌握二次函数的解析式是解题的关键.
14.已知点A(3a-9,2-a)关于原点对称的点为A',点A'关于x轴对称的点为A”,
点A"在第四象限,那么。的取值范围是2<a<3.
【分析】先根据对称性得出A"(9-3a,2-a),然后根据第四象限内点的横坐标大于
0,纵坐标小于0,列出不等式组,解不等式组即可.
解:..•点A(3a-9,2-a)关于原点对称的点为A',
.'.A'(9-3a,«-2),
•••点A'关于x轴对称的点为A",
:.A"(9-3a,2-a),
•.•点A”在第四象限,
f9-3a>0
:.<,,
2-a<0
解得:2<a<?>.
故答案为:2<aV3.
【点评】本题主要考查了平面直角坐标系中点的坐标特点,关于x轴对称的点的特点,
>0
关于原点对称点的特点,解题的关键是列出关于。的不等式组,.
2-a<0
15.如图,把RtZ\ABC绕点A逆时针旋转40°,得到RtAAB'C,点C'恰好落在边AB
上,连接88',则NC'B'B的度数是20°.
【分析】先根据旋转的性质,求得AB=AB,NBA£=40°,进而得到AAB斤中,Z
ABB'=70°,再根据/C=90。,在RtZxBCB'中,求得/UB'8即可.
解:•.•把RtZkABC绕点A逆时针旋转40°,得到RtZ\AB'C,
:.AB=AB\NBAB'=40°,
・・・NA8'B=NAB8,
ZABH'=—X(180°-40°)=70°,
2
又♦.•N4CB'=NC=90°,
...n△BOB'中,ZCB'B=90°-70°=20°.
故答案为:20。.
【点评】本题主要考查了旋转的性质,解决问题的关键是掌握:对应点到旋转中心的距
离相等,对应点与旋转中心所连线段的夹角等于旋转角.
16.如图,正方形EFG”的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH
的面积为y,则y与x的函数关系为v=2F-4x+4.
【分析】由A4S证明△AHE彩△BEE得出AE=BF=x,AH=BE=2-x,再根据勾股定
理,求出EH2,即可得到y与x之间的函数关系式.
解:如图所示:
•••四边形ABCD是边长为2的正方形,
二乙4=/8=90°,A8=2.
.••Zl+Z2=90",
:四边形EFG”为正方形,
:.NHEF=90°,EH=EF.
.•.Zl+Z3=90°,
.\Z2=Z3,
在△4HE与△8EF中,
2A=NB
V'N2=N3,
EH=FE
.♦.△AHE注ABEF(AAS),
'.AE=BF=x,AH=BE=2-x,
在Rta4HE中,由勾股定理得:
EW2=A£2+A//2=f+(2-x)2="-4x+4;
即y=2%2-4x+4(0<x<2),
故答案为:y=2^-4x+4.
【点评】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适
中,求出y与x之间的函数关系式是解题的关键.
17.如图,点P是等边三角形ABC内的一点,且PA=QPB=如,PC=2&,则/
APB的度数为150°.
【分析】由旋转的性质可得PB=EB,/EBP=NA8C=60°,可得△PBE为等边三角
形,由勾股定理的逆定理可得NAPE=90°,即可求解.
解:如图,将△BPC绕点B逆时针旋转60°后得到的△8EA.
:./\PBC^/\EBA,
:.PB=EB,ZEBP=ZABC=60°,
.•.△PBE为等边三角形,
:.PE=PB=五,/EP8=60。,
♦:AE=PC=2®PA=G
PE^+AP2=AE2,
...△APE为直角三角形,
AZAP£=90°,
AZAPB=900+60°=150°;
故答案为:150°
【点评】本题考查了旋转的性质,全等三角形的性质,等边三角形的判定,勾股定理的
逆定理的应用,i正得ABPE为等边三角形和△APE为直角三角形是解题的关键.
18.如图是二次函数yuo^+bx+c图象的一部分,其对称轴是直线x=-l,且过点(-3,
0),有以下结论:①必c>0;②4a+2b+c>0;③a-bW机(mz+6)(机为任意实数);
④若方程“(x+3)(1-X)=-1的两根为X”X2,且Xl<X2,则-3<X1<X2<1,其中
说法正确的有(2)(3).
【分析】根据抛物线开口方向、对称轴、与),轴的交点可对①进行判断;根据抛物线的
对称性可知x=2时,y>0,可对②进行判断;根据二次函数的性质可对③进行判断;根
据函数与方程的关系可对④进行判断.
解:•.•抛物线开口向上,
:.a>0,
•••抛物线对称轴为直线彳=-旦=-1,
2a
.\b=2a>0,
•.•抛物线与y轴的交点在x轴下方,
.\c<0,
.".abc<0,所以①错误;
抛物线对称轴是直线x=-1,且过点(-3,0),
二抛物线过点(1,0),
,x=2时,y>0,
.♦.4a+2b+c>0,所以②正确;
抛物线的对称轴为直线>=-1,
二当x=-l时,y有最小值,
'.anr+bm+c^-a-b+c(m为任意实数),
:.m(am+b)^a-b(机为任意实数),所以③正确;
•.•方程a(x+3)(1-x)=-1的两根为x”X2,且xi<X2,
抛物线与直线y=l有两个交点(为,1),(X2,1),
由图象可知xi<-3,X2>1,所以④错误.
故答案为:②③.
【点评】本题考查了二次函数图象与系数的关系:二次函数.丫=加+以+c(aWO),二次
项系数。决定抛物线的开口方向和大小,当“>0时,抛物线向上开口;当aVO时,抛
物线向下开口;一次项系数6和二次项系数a共同决定对称轴的位置:当“与&同号时
(即时>0),对称轴在y轴左;当。与b异号时(即时V0),对称轴在y轴右.(简
称:左同右异).抛物线与y轴交于(O,O.抛物线与x轴交点个数:△=及-4ac>0
时,抛物线与x轴有2个交点;A=〃-4ac=0时,抛物线与x轴有1个交点;△=按
-4ac<0时,抛物线与x轴没有交点.
三.解答题(共6小题,满分46分)
19.在下面的网格(每个小正方形的边长为1)中按要求画出图形并解答:
(1)先将AABC向下平移5格得4A山C”再将AABC以点。为旋转中心,沿顺时针
方向旋转90°得4A282c2;
(2)请在图中以点0为坐标原点,建立适当直角坐标系,写出此时点4、星、C2的坐
【分析】本题考查的是平移变换与旋转变换作图.
作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:
①确定平移的方向和距离,先确定一组对应点;
②确定图形中的关键点;
③利用第一组对应点和平移的性质确定图中所有关键点的对应点;
④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.
作旋转后的图形的依据是旋转的性质,基本作法是:
①先确定图形的关键点;
②利用旋转性质作出关键点的对应点;
③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.
【点评】在平移时要注意平移的方向和平移的距离,旋转时借助于格点图形的特征构造
直角.要注意旋转中心,旋转方向和角度.
20.如图,已知抛物线y=-f+1)的对称轴为x=l,请你解答下列问题:
(I)求,7?的值;
(II)求出抛物线与X轴的交点;
(III)当y随x的增大而减小时x的取值范围是一
(IV)当y<0时,x的取值范围是x<-1或x>3.
【分析】(I)利用抛物线的对称轴方程得到-亍既与■=],解方程得到,〃的值;
(II)令y=0,然后解方程-/+2x+3=0得抛物线与x轴的交点
(III)根据二次函数的性质求解;
(IV)结合函数图象,写出抛物线在x轴下方所对应的自变量的范围即可.
解:(I)抛物线的对称轴为直线x=-2界])=1,
(II)'.'in—3,
二抛物线解析式为丫=-^+2x+3,
当y=0时,-r+2%+3=0,解得汨=-1,忿=3,
.•.抛物线与x轴的交点为(-1,0),(3,0);
(III);a=-lV0,对称轴为直线x=l,
...当x>l时,y的值随x的增大而减小,
故答案为x>l;
(IV)当x<-1或x>3时,y<0,
故答案为x<-1或x>3.
【点评】本题考查了抛物线与x轴的交点:把求二次函数y=af+fec+c(a,匕,c是常数,
与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性
质.
21.某公司的商品进价每件60元,售价每件130元,为了支持“抗新冠肺炎”,每销售一
件捐款4元.且未来30天,该商品将开展每天降价1元”的促销活动,即从第一天起每
天的单价均比前一天降1元,市场调查发现,设第x天(1WXW30且x为整数)的销量
为),件,y与x满足一次函数关系,其对应数据如表:
X(天)......1357......
y(件)...35455565...
(1)直接写出y与x的函数关系式;
(2)在这30天内,哪一天去掉捐款后的利润是6235元?
(3)设第x天去掉捐款后的利润为W元,试求出W与x之间的函数关系式,并求出哪
一天的利润最大,最大利润是多少元?
【分析】(1)设y与x满足的一次函数数关系式为y="+b(大片0),用待定系数法求
解即可;
(2)根据题意得关于x的一元二次方程:(130-X-60-4)(5x+30)=6235,求得方
程的解并根据问题的实际意义作出取舍即可;
(3)由题意得W关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案.
解:(1)设y与x满足的一次函数数关系式为y=Ax+b(Z70),
将(1.35),(3,45)分别代入得:135-k+b,
I45=3k+b
解得:(k=5,
lb=30
与x的函数关系式为y=5x+30;
(2)根据题意得:(130-%-60-4)(5x+30)=6235,
整理得:『-60x+851=0,
解得:x=23或x=37(舍),
在这30天内,第23天去掉捐款后的利润是6235元;
(3)由题意得:
W=(130-X-60-4)(5x+30
=-5/+300x+1980
=-5(x-30)2+6480,
'."a--5<0,
...当x=30时,W有最大值,最大值为6480元.
...W与x之间的函数关系式是W=-5(x-30)2+6480,第30天的利润最大,最大利润
是6480元.
【点评】本题考查了二次函数在实际问题中的应用、待定系数法求一次函数的解析式及
二次函数与一元二次方程的关系等知识点,理清题中的数量关系并熟练掌握二次函数的
性质是解题的关键.
22.如图,长为10,"的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8〃?.如果梯子的
底端滑动1相,求梯子顶端下滑的区间.(精确到0』米)
【分析】设梯子顶端下滑了xm,利用勾股定理,即可得出关于尤的一元二次方程,解之
取其符合题意的值即可得出结论.
解:设梯子顶端下滑了R*,
依题意得:(87)2+(田2分+1)2=102,
解得:xi=8-J克七0.9,及=8+J克%15.1(不合题意,舍去).
答:梯子顶端下滑了约09几
【点评】本题考查了一元二次方程的应用以及勾股定理,找准等量关系,正确列出一元
二次方程是解题的关键.
23.某学校活动小组探究了如下问题,请你帮助他们完成解答过程:
(1)操作发现:如图1,ZVIBC中,AB=AC,NBAC=90。,。为边BC上的一点,连
22
接4),作/E4O=90°,并截取E4=A£>,连接。F.求证:BD+CD=£)/^:
(2)灵活运用:如图2,在四边形A8C。中,AC,BO是对角线,△ABC是等边三角形,
ZADC=30°,AD=3,BD=5,求CD的长.
【分析】(1)利用手拉手模型-旋转性全等证明△ABO名zMCF,从而得BD=CF,Z
B=NACF,进而可得NOC尸=90°,然后根据勾股定理进行计算即可解答;
(2)以CD为边在CD的右侧作等边三角形CDE,连接AE,利用手拉手模型-旋转性
全等证明△BCO四从而可得BD=AE=5,然后再求出NAOE=90°,在RtA
A£)七中,利用勾股定理求出。区即可解答.
【解答】(1)证明:・・・N3AC=90°,
・•・ZB+ZACD=90°
VZFAD=90°,
AABAC-ZDAC=ZDAF'-ADAC,
:.ZBAD=ZCAFt
•・・AB=AC,DA=FA,
:./\ABD^/\ACF(SAS),
:・BD=CF,NB=NACF,
:.ZACF+ZACD=90°,
:.ZDCF=90°,
:.DC+CUDF1,
:.BD2+CD2=DI^;
(2)以CO为边在8的右侧作等边三角形COE,连接AE,
:,CD=CE=DE,NDCE=NCDE=60°,
•••△ABC是等边三角形,
.\AC=BCfZACB=60°,
JZACB+ZACD=ZDCE+ZACD,
:・/BCD=/ACE,
AABCD^AACE(SAS),
:.BD=AE=5,
VZADC=30°,
AZADE=ZADC+ZCDE=90°,
.•.D£=7AE2-AD2=V52-32=4>
:.DE=DC=4,
.•.CD的长为4.
【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性
质,等腰直角三角形,勾股定理,熟练掌握手拉手模型-旋转性全等,并结合图形添加
适当的辅助线是解题的关键.
24.如图,在顶点为P的抛物线丫=“(*-/z)2+A(aW0)的对称轴/上取点A",人+4-),
4a
过4作8C,/交抛物线于8、C两点(8在C的左侧),点A'和点A关于点P对称;
过A'作直线机,/,又分别过点8、C作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生化制剂项目安全风险评价报告
- 中国云通信市场运行态势及行业发展前景预测报告
- 2022-2027年中国补血治疗药行业市场全景评估及投资潜力预测报告
- 2025年中国五倍子保健品行业市场深度分析及发展前景预测报告
- 中国3D人脸识别市场调查研究及行业投资潜力预测报告
- 2025年各种型号乳白胶行业深度研究分析报告
- 2025年挖掘机驾驶室行业深度研究分析报告
- 中国RJ45连接器行业市场前景预测及投资价值评估分析报告
- 2024年污水处理MBR技术行业市场发展监测及投资方向研究报告
- 深圳半导体材料项目可行性研究报告
- 红楼梦英文版(杨宪益译)
- 初三开学第一课家长会优秀课件两篇
- 马工程教材《公共财政概论》PPT-第十四章 国际财政
- 狮子王1中英文台词
- 《大学俄语》教学大纲
- 清淤工程施工记录表
- 2022年涉农领域涉嫌非法集资风险专项排查工作总结
- 起重装卸机械操作工国家职业技能标准(2018年版)
- 五年级下册美术课件-第2课 新街古韵丨赣美版
- 秦荻辉科技英语写作教程练习答案(共42页)
- GB∕T 41168-2021 食品包装用塑料与铝箔蒸煮复合膜、袋
评论
0/150
提交评论